Publikation: Groupes Fins
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate some common points between stable structures and weakly small structures and define a structure M to be fine if the Cantor-Bendixson rank of the topological space Sφ(dcleq(A)) is an ordinal for every finite subset A of M and every formula φ(x.y) where x is of arity 1. By definition, a theory is fine if all its models are so. Stable theories and small theories are fine, and weakly minimal structures are fine. For any finite subset A of a fine group G, the traces on the algebraic closure acl(A) of A of definable subgroups of G over acl(A) which are boolean combinations of instances of an arbitrary fixed formula can decrease only finitely many times. An infinite field with a fine theory has no additive nor multiplicative proper definable subgroups of finite index, nor Artin-Schreier extensions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MILLIET, Cedric, 2014. Groupes Fins. In: The Journal of Symbolic Logic. 2014, 79(4), pp. 1120-1132. ISSN 0022-4812. eISSN 1943-5886. Available under: doi: 10.1017/jsl.2014.12BibTex
@article{Milliet2014Group-30526, year={2014}, doi={10.1017/jsl.2014.12}, title={Groupes Fins}, number={4}, volume={79}, issn={0022-4812}, journal={The Journal of Symbolic Logic}, pages={1120--1132}, author={Milliet, Cedric} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30526"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30526/1/Milliet_0-280478.pdf"/> <dc:contributor>Milliet, Cedric</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-24T15:22:52Z</dcterms:available> <dcterms:issued>2014</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-24T15:22:52Z</dc:date> <dc:creator>Milliet, Cedric</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30526"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30526/1/Milliet_0-280478.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Groupes Fins</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We investigate some common points between stable structures and weakly small structures and define a structure M to be fine if the Cantor-Bendixson rank of the topological space Sφ(dcl<sup>eq</sup>(A)) is an ordinal for every finite subset A of M and every formula φ(x.y) where x is of arity 1. By definition, a theory is fine if all its models are so. Stable theories and small theories are fine, and weakly minimal structures are fine. For any finite subset A of a fine group G, the traces on the algebraic closure acl(A) of A of definable subgroups of G over acl(A) which are boolean combinations of instances of an arbitrary fixed formula can decrease only finitely many times. An infinite field with a fine theory has no additive nor multiplicative proper definable subgroups of finite index, nor Artin-Schreier extensions.</dcterms:abstract> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>