Publikation: Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Word embeddings have gained significant attention as learnable representations of semantic relations between words, and have been shown to improve upon the results of traditional word representations. However, little effort has been devoted to using embeddings for the retrieval of entity associations beyond pairwise relations. In this paper, we use popular embedding methods to train vector representations of an entity-annotated news corpus, and evaluate their performance for the task of predicting entity participation in news events versus a traditional word cooccurrence network as a baseline. To support queries for events with multiple participating entities, we test a number of combination modes for the embedding vectors. While we find that even the best combination modes for word embeddings do not quite reach the performance of the full cooccurrence network, especially for rare entities, we observe that different embedding methods model different types of relations, thereby indicating the potential for ensemble methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FEHER, Gloria, Andreas SPITZ, Michael GERTZ, 2019. Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings. SIGIR'19: 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris, France, 21. Juli 2019 - 25. Juli 2019. In: SIGIR'19 : Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 2019, pp. 1169-1172. ISBN 978-1-4503-6172-9. Available under: doi: 10.1145/3331184.3331366BibTex
@inproceedings{Feher2019-05-22T10:13:48ZRetri-55680, year={2019}, doi={10.1145/3331184.3331366}, title={Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings}, isbn={978-1-4503-6172-9}, publisher={ACM}, address={New York, NY}, booktitle={SIGIR'19 : Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval}, pages={1169--1172}, author={Feher, Gloria and Spitz, Andreas and Gertz, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55680"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2019-05-22T10:13:48Z</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:20:20Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Feher, Gloria</dc:contributor> <dcterms:abstract xml:lang="eng">Word embeddings have gained significant attention as learnable representations of semantic relations between words, and have been shown to improve upon the results of traditional word representations. However, little effort has been devoted to using embeddings for the retrieval of entity associations beyond pairwise relations. In this paper, we use popular embedding methods to train vector representations of an entity-annotated news corpus, and evaluate their performance for the task of predicting entity participation in news events versus a traditional word cooccurrence network as a baseline. To support queries for events with multiple participating entities, we test a number of combination modes for the embedding vectors. While we find that even the best combination modes for word embeddings do not quite reach the performance of the full cooccurrence network, especially for rare entities, we observe that different embedding methods model different types of relations, thereby indicating the potential for ensemble methods.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55680"/> <dc:creator>Feher, Gloria</dc:creator> <dc:creator>Gertz, Michael</dc:creator> <dcterms:title>Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings</dcterms:title> <dc:contributor>Gertz, Michael</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:20:20Z</dcterms:available> <dc:contributor>Spitz, Andreas</dc:contributor> <dc:creator>Spitz, Andreas</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>