Publikation:

Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Feher, Gloria
Gertz, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SIGIR'19 : Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 2019, pp. 1169-1172. ISBN 978-1-4503-6172-9. Available under: doi: 10.1145/3331184.3331366

Zusammenfassung

Word embeddings have gained significant attention as learnable representations of semantic relations between words, and have been shown to improve upon the results of traditional word representations. However, little effort has been devoted to using embeddings for the retrieval of entity associations beyond pairwise relations. In this paper, we use popular embedding methods to train vector representations of an entity-annotated news corpus, and evaluate their performance for the task of predicting entity participation in news events versus a traditional word cooccurrence network as a baseline. To support queries for events with multiple participating entities, we test a number of combination modes for the embedding vectors. While we find that even the best combination modes for word embeddings do not quite reach the performance of the full cooccurrence network, especially for rare entities, we observe that different embedding methods model different types of relations, thereby indicating the potential for ensemble methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

word embeddings; embedding vector combination; implicit network; entity network

Konferenz

SIGIR'19: 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 21. Juli 2019 - 25. Juli 2019, Paris, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FEHER, Gloria, Andreas SPITZ, Michael GERTZ, 2019. Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings. SIGIR'19: 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris, France, 21. Juli 2019 - 25. Juli 2019. In: SIGIR'19 : Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 2019, pp. 1169-1172. ISBN 978-1-4503-6172-9. Available under: doi: 10.1145/3331184.3331366
BibTex
@inproceedings{Feher2019-05-22T10:13:48ZRetri-55680,
  year={2019},
  doi={10.1145/3331184.3331366},
  title={Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings},
  isbn={978-1-4503-6172-9},
  publisher={ACM},
  address={New York, NY},
  booktitle={SIGIR'19 : Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={1169--1172},
  author={Feher, Gloria and Spitz, Andreas and Gertz, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55680">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2019-05-22T10:13:48Z</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:20:20Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Feher, Gloria</dc:contributor>
    <dcterms:abstract xml:lang="eng">Word embeddings have gained significant attention as learnable representations of semantic relations between words, and have been shown to improve upon the results of traditional word representations. However, little effort has been devoted to using embeddings for the retrieval of entity associations beyond pairwise relations. In this paper, we use popular embedding methods to train vector representations of an entity-annotated news corpus, and evaluate their performance for the task of predicting entity participation in news events versus a traditional word cooccurrence network as a baseline. To support queries for events with multiple participating entities, we test a number of combination modes for the embedding vectors. While we find that even the best combination modes for word embeddings do not quite reach the performance of the full cooccurrence network, especially for rare entities, we observe that different embedding methods model different types of relations, thereby indicating the potential for ensemble methods.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55680"/>
    <dc:creator>Feher, Gloria</dc:creator>
    <dc:creator>Gertz, Michael</dc:creator>
    <dcterms:title>Retrieving Multi-Entity Associations : An Evaluation of Combination Modes for Word Embeddings</dcterms:title>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:20:20Z</dcterms:available>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen