Publikation: A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Traditionally, the skin sensitization potential of chemicals has been assessed using animal models. Due to growing ethical, political, and financial concerns, sustainable alternatives to animal testing need to be developed. As publicly available skin sensitization data continues to grow, computational approaches, such as alert-based systems, read-across, and QSAR models, are expected to reduce or replace animal testing for the prediction of human skin sensitization potential. Herein, we discuss current computational approaches to predicting skin sensitization and provide future perspectives of the field. As a proof-of-concept study, we have compiled the largest skin sensitization data set in the public domain and benchmarked several methods for building skin sensitization models. We propose a new comprehensive approach, which integrates multiple QSAR models developed with in vitro, in chemico, animal, and human data, and a Naive Bayes model for predicting human skin sensitization. Both the data sets and the KNIME implementation of the model allowing skin sensitization prediction for molecules of interest have been made freely available.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ALVES, Vinicius M., Stephen J. CAPUZZI, Rodolpho C. BRAGA, Joyce V. B. BORBA, Arthur C. SILVA, Thomas LUECHTEFELD, Thomas HARTUNG, Carolina Horta ANDRADE, Eugene N. MURATOV, Alexander TROPSHA, 2018. A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment. In: ACS Sustainable Chemistry & Engineering. 2018, 6(3), pp. 2845-2859. eISSN 2168-0485. Available under: doi: 10.1021/acssuschemeng.7b04220BibTex
@article{Alves2018-03-05Persp-41786, year={2018}, doi={10.1021/acssuschemeng.7b04220}, title={A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment}, number={3}, volume={6}, journal={ACS Sustainable Chemistry & Engineering}, pages={2845--2859}, author={Alves, Vinicius M. and Capuzzi, Stephen J. and Braga, Rodolpho C. and Borba, Joyce V. B. and Silva, Arthur C. and Luechtefeld, Thomas and Hartung, Thomas and Andrade, Carolina Horta and Muratov, Eugene N. and Tropsha, Alexander} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41786"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41786"/> <dc:creator>Tropsha, Alexander</dc:creator> <dc:creator>Silva, Arthur C.</dc:creator> <dc:language>eng</dc:language> <dc:creator>Andrade, Carolina Horta</dc:creator> <dc:creator>Borba, Joyce V. B.</dc:creator> <dcterms:title>A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hartung, Thomas</dc:creator> <dc:creator>Alves, Vinicius M.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Muratov, Eugene N.</dc:contributor> <dc:creator>Capuzzi, Stephen J.</dc:creator> <dc:contributor>Braga, Rodolpho C.</dc:contributor> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:creator>Muratov, Eugene N.</dc:creator> <dc:contributor>Capuzzi, Stephen J.</dc:contributor> <dc:contributor>Andrade, Carolina Horta</dc:contributor> <dc:contributor>Borba, Joyce V. B.</dc:contributor> <dc:creator>Braga, Rodolpho C.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-15T08:05:26Z</dc:date> <dc:contributor>Luechtefeld, Thomas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-15T08:05:26Z</dcterms:available> <dc:contributor>Silva, Arthur C.</dc:contributor> <dc:contributor>Alves, Vinicius M.</dc:contributor> <dcterms:abstract xml:lang="eng">Traditionally, the skin sensitization potential of chemicals has been assessed using animal models. Due to growing ethical, political, and financial concerns, sustainable alternatives to animal testing need to be developed. As publicly available skin sensitization data continues to grow, computational approaches, such as alert-based systems, read-across, and QSAR models, are expected to reduce or replace animal testing for the prediction of human skin sensitization potential. Herein, we discuss current computational approaches to predicting skin sensitization and provide future perspectives of the field. As a proof-of-concept study, we have compiled the largest skin sensitization data set in the public domain and benchmarked several methods for building skin sensitization models. We propose a new comprehensive approach, which integrates multiple QSAR models developed with in vitro, in chemico, animal, and human data, and a Naive Bayes model for predicting human skin sensitization. Both the data sets and the KNIME implementation of the model allowing skin sensitization prediction for molecules of interest have been made freely available.</dcterms:abstract> <dc:creator>Luechtefeld, Thomas</dc:creator> <dc:contributor>Tropsha, Alexander</dc:contributor> <dcterms:issued>2018-03-05</dcterms:issued> </rdf:Description> </rdf:RDF>