Publikation:

A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Alves, Vinicius M.
Capuzzi, Stephen J.
Braga, Rodolpho C.
Borba, Joyce V. B.
Silva, Arthur C.
Luechtefeld, Thomas
Andrade, Carolina Horta
Muratov, Eugene N.
Tropsha, Alexander

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACS Sustainable Chemistry & Engineering. 2018, 6(3), pp. 2845-2859. eISSN 2168-0485. Available under: doi: 10.1021/acssuschemeng.7b04220

Zusammenfassung

Traditionally, the skin sensitization potential of chemicals has been assessed using animal models. Due to growing ethical, political, and financial concerns, sustainable alternatives to animal testing need to be developed. As publicly available skin sensitization data continues to grow, computational approaches, such as alert-based systems, read-across, and QSAR models, are expected to reduce or replace animal testing for the prediction of human skin sensitization potential. Herein, we discuss current computational approaches to predicting skin sensitization and provide future perspectives of the field. As a proof-of-concept study, we have compiled the largest skin sensitization data set in the public domain and benchmarked several methods for building skin sensitization models. We propose a new comprehensive approach, which integrates multiple QSAR models developed with in vitro, in chemico, animal, and human data, and a Naive Bayes model for predicting human skin sensitization. Both the data sets and the KNIME implementation of the model allowing skin sensitization prediction for molecules of interest have been made freely available.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Skin sensitization, QSAR, Naïve Bayes, Alternative methods

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ALVES, Vinicius M., Stephen J. CAPUZZI, Rodolpho C. BRAGA, Joyce V. B. BORBA, Arthur C. SILVA, Thomas LUECHTEFELD, Thomas HARTUNG, Carolina Horta ANDRADE, Eugene N. MURATOV, Alexander TROPSHA, 2018. A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment. In: ACS Sustainable Chemistry & Engineering. 2018, 6(3), pp. 2845-2859. eISSN 2168-0485. Available under: doi: 10.1021/acssuschemeng.7b04220
BibTex
@article{Alves2018-03-05Persp-41786,
  year={2018},
  doi={10.1021/acssuschemeng.7b04220},
  title={A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment},
  number={3},
  volume={6},
  journal={ACS Sustainable Chemistry & Engineering},
  pages={2845--2859},
  author={Alves, Vinicius M. and Capuzzi, Stephen J. and Braga, Rodolpho C. and Borba, Joyce V. B. and Silva, Arthur C. and Luechtefeld, Thomas and Hartung, Thomas and Andrade, Carolina Horta and Muratov, Eugene N. and Tropsha, Alexander}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41786">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41786"/>
    <dc:creator>Tropsha, Alexander</dc:creator>
    <dc:creator>Silva, Arthur C.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Andrade, Carolina Horta</dc:creator>
    <dc:creator>Borba, Joyce V. B.</dc:creator>
    <dcterms:title>A Perspective and a New Integrated Computational Strategy for Skin Sensitization Assessment</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dc:creator>Alves, Vinicius M.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Muratov, Eugene N.</dc:contributor>
    <dc:creator>Capuzzi, Stephen J.</dc:creator>
    <dc:contributor>Braga, Rodolpho C.</dc:contributor>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:creator>Muratov, Eugene N.</dc:creator>
    <dc:contributor>Capuzzi, Stephen J.</dc:contributor>
    <dc:contributor>Andrade, Carolina Horta</dc:contributor>
    <dc:contributor>Borba, Joyce V. B.</dc:contributor>
    <dc:creator>Braga, Rodolpho C.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-15T08:05:26Z</dc:date>
    <dc:contributor>Luechtefeld, Thomas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-15T08:05:26Z</dcterms:available>
    <dc:contributor>Silva, Arthur C.</dc:contributor>
    <dc:contributor>Alves, Vinicius M.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Traditionally, the skin sensitization potential of chemicals has been assessed using animal models. Due to growing ethical, political, and financial concerns, sustainable alternatives to animal testing need to be developed. As publicly available skin sensitization data continues to grow, computational approaches, such as alert-based systems, read-across, and QSAR models, are expected to reduce or replace animal testing for the prediction of human skin sensitization potential. Herein, we discuss current computational approaches to predicting skin sensitization and provide future perspectives of the field. As a proof-of-concept study, we have compiled the largest skin sensitization data set in the public domain and benchmarked several methods for building skin sensitization models. We propose a new comprehensive approach, which integrates multiple QSAR models developed with in vitro, in chemico, animal, and human data, and a Naive Bayes model for predicting human skin sensitization. Both the data sets and the KNIME implementation of the model allowing skin sensitization prediction for molecules of interest have been made freely available.</dcterms:abstract>
    <dc:creator>Luechtefeld, Thomas</dc:creator>
    <dc:contributor>Tropsha, Alexander</dc:contributor>
    <dcterms:issued>2018-03-05</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen