Publikation: Improving visual analytics environments through a methodological framework for automatic clutter reduction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
One of the main visual analytics characteristics is the tight integration between automatic computations and interactive visualization. This generally corresponds to the availability of powerful algorithms that allow for manipulating the data under analysis, transforming it in order to feed suitable visualizations.
This paper focuses on more general purpose automatic computations and presents a methodological framework that can improve the quality of the visualizations adopted in the analytical process, using the dataset at hand and the actual visualization.
In particular, the paper deals with the critical issue of visual clutter reduction, presenting a general strategy for analyzing and reducing it through random data sampling. The basic idea is to model the visualization in a virtual space in order to analyze both clutter and data features (e.g., absolute density, relative density, etc.). In this way we can measure the visual overlapping which may likely affects a visualization while representing a large dataset, obtaining precise visual quality metrics about the visualization degradation and devising automatic sampling strategies in order to improve the overall image quality. Metrics and algorithms have been tuned taking into account the results of suitable user studies. We will describe our proposal using two running case studies, one on 2D scatterplots and the other one on parallel coordinates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTINI, Enrico, Giuseppe SANTUCCI, 2011. Improving visual analytics environments through a methodological framework for automatic clutter reduction. In: Journal of Visual Languages & Computing. Elsevier. 2011, 22(3), pp. 194-212. ISSN 1045-926X. eISSN 1095-8533. Available under: doi: 10.1016/j.jvlc.2011.02.002BibTex
@article{Bertini2011-06Impro-50689, year={2011}, doi={10.1016/j.jvlc.2011.02.002}, title={Improving visual analytics environments through a methodological framework for automatic clutter reduction}, number={3}, volume={22}, issn={1045-926X}, journal={Journal of Visual Languages & Computing}, pages={194--212}, author={Bertini, Enrico and Santucci, Giuseppe} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50689"> <dc:contributor>Santucci, Giuseppe</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-03T13:58:43Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Bertini, Enrico</dc:contributor> <dcterms:title>Improving visual analytics environments through a methodological framework for automatic clutter reduction</dcterms:title> <dc:creator>Bertini, Enrico</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-03T13:58:43Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50689"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Santucci, Giuseppe</dc:creator> <dcterms:abstract xml:lang="eng">One of the main visual analytics characteristics is the tight integration between automatic computations and interactive visualization. This generally corresponds to the availability of powerful algorithms that allow for manipulating the data under analysis, transforming it in order to feed suitable visualizations.<br /><br />This paper focuses on more general purpose automatic computations and presents a methodological framework that can improve the quality of the visualizations adopted in the analytical process, using the dataset at hand and the actual visualization.<br /><br />In particular, the paper deals with the critical issue of visual clutter reduction, presenting a general strategy for analyzing and reducing it through random data sampling. The basic idea is to model the visualization in a virtual space in order to analyze both clutter and data features (e.g., absolute density, relative density, etc.). In this way we can measure the visual overlapping which may likely affects a visualization while representing a large dataset, obtaining precise visual quality metrics about the visualization degradation and devising automatic sampling strategies in order to improve the overall image quality. Metrics and algorithms have been tuned taking into account the results of suitable user studies. We will describe our proposal using two running case studies, one on 2D scatterplots and the other one on parallel coordinates.</dcterms:abstract> <dcterms:issued>2011-06</dcterms:issued> </rdf:Description> </rdf:RDF>