Publikation: Conditional Analysis on R^d
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper provides versions of classical results from linear algebra, real analysis and convex analysis in a free module of finite rank over the ring L0 of measurable functions on a σ-finite measure space. We study the question whether a submodule is finitely generated and introduce the more general concepts of L0-affine sets, L0-convex sets, L0-convex cones, L0-hyperplanes, L0-half-spaces and L0-convex polyhedral sets. We investigate orthogonal complements, orthogonal decompositions and the existence of orthonormal bases. We also study L0-linear, L0-affine, L0-convex and L0-sublinear functions and introduce notions of continuity, differentiability, directional derivatives and subgradients. We use a conditional version of the Bolzano-Weierstrass theorem to show that conditional Cauchy sequences converge and give conditions under which conditional optimization problems have optimal solutions. We prove results on the separation of L0-convex sets by L0-hyperplanes and study L0-convex conjugate functions. We provide a result on the existence of L0-subgradients of L0-convex functions, prove a conditional version of the Fenchel-Moreau theorem and study conditional inf-convolutions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHERIDITO, Patrick, Michael KUPPER, Nicolas VOGELPOTH, 2014. Conditional Analysis on R^dBibTex
@unpublished{Cheridito2014Condi-30395, year={2014}, title={Conditional Analysis on R^d}, author={Cheridito, Patrick and Kupper, Michael and Vogelpoth, Nicolas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30395"> <dcterms:abstract xml:lang="eng">This paper provides versions of classical results from linear algebra, real analysis and convex analysis in a free module of finite rank over the ring L<sup>0</sup> of measurable functions on a σ-finite measure space. We study the question whether a submodule is finitely generated and introduce the more general concepts of L<sup>0</sup>-affine sets, L<sup>0</sup>-convex sets, L<sup>0</sup>-convex cones, L<sup>0</sup>-hyperplanes, L<sup>0</sup>-half-spaces and L<sup>0</sup>-convex polyhedral sets. We investigate orthogonal complements, orthogonal decompositions and the existence of orthonormal bases. We also study L<sup>0</sup>-linear, L<sup>0</sup>-affine, L<sup>0</sup>-convex and L<sup>0</sup>-sublinear functions and introduce notions of continuity, differentiability, directional derivatives and subgradients. We use a conditional version of the Bolzano-Weierstrass theorem to show that conditional Cauchy sequences converge and give conditions under which conditional optimization problems have optimal solutions. We prove results on the separation of L<sup>0</sup>-convex sets by L<sup>0</sup>-hyperplanes and study L<sup>0</sup>-convex conjugate functions. We provide a result on the existence of L<sup>0</sup>-subgradients of L<sup>0</sup>-convex functions, prove a conditional version of the Fenchel-Moreau theorem and study conditional inf-convolutions.</dcterms:abstract> <dc:contributor>Cheridito, Patrick</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T13:17:43Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Vogelpoth, Nicolas</dc:contributor> <dc:creator>Cheridito, Patrick</dc:creator> <dcterms:issued>2014</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T13:17:43Z</dc:date> <dc:contributor>Kupper, Michael</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30395"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Conditional Analysis on R^d</dcterms:title> <dc:creator>Kupper, Michael</dc:creator> <dc:creator>Vogelpoth, Nicolas</dc:creator> </rdf:Description> </rdf:RDF>