Convergence of the Simplicial Rational Bernstein Form

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Modelling, Computation and Optimization in Information Systems and Management Sciences : Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences - MCO 2015 - Part I. Cham: Springer International Publishing, 2015, pp. 433-441. Advances in Intelligent Systems and Computing. 359. ISBN 978-3-319-18160-8. Available under: doi: 10.1007/978-3-319-18161-5_37
Zusammenfassung

Bernstein polynomials on a simplex V are considered. The expansion of a given polynomial p into these polynomials provides bounds for range of p over V. Bounds for the range of a rational function over V can easily be obtained from the Bernstein expansions of the numerator and denominator polynomials of this function. In this paper it is shown that these bounds converge monotonically and linearly to the range of the rational function if the degree of the Bernstein expansion is elevated. If V is subdivided then the convergence is quadratic with respect to the maximum of the diameters of the subsimplices.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Bernstein polynomial, simplex, range bounds, rational function, degree elevation, subdivision
Konferenz
Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2015), 11. Mai 2015 - 13. Mai 2015, Metz, France
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690TITI, Jihad, Tareq HAMADNEH, Jürgen GARLOFF, 2015. Convergence of the Simplicial Rational Bernstein Form. Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2015). Metz, France, 11. Mai 2015 - 13. Mai 2015. In: Modelling, Computation and Optimization in Information Systems and Management Sciences : Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences - MCO 2015 - Part I. Cham: Springer International Publishing, 2015, pp. 433-441. Advances in Intelligent Systems and Computing. 359. ISBN 978-3-319-18160-8. Available under: doi: 10.1007/978-3-319-18161-5_37
BibTex
@inproceedings{Titi2015Conve-33224,
  year={2015},
  doi={10.1007/978-3-319-18161-5_37},
  title={Convergence of the Simplicial Rational Bernstein Form},
  number={359},
  isbn={978-3-319-18160-8},
  publisher={Springer International Publishing},
  address={Cham},
  series={Advances in Intelligent Systems and Computing},
  booktitle={Modelling, Computation and Optimization in Information Systems and Management Sciences : Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences - MCO 2015 - Part I},
  pages={433--441},
  author={Titi, Jihad and Hamadneh, Tareq and Garloff, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33224">
    <dc:language>eng</dc:language>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dc:creator>Titi, Jihad</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33224"/>
    <dc:contributor>Hamadneh, Tareq</dc:contributor>
    <dcterms:abstract xml:lang="eng">Bernstein polynomials on a simplex V are considered. The expansion of a given polynomial p into these polynomials provides bounds for range of p over V. Bounds for the range of a rational function over V can easily be obtained from the Bernstein expansions of the numerator and denominator polynomials of this function. In this paper it is shown that these bounds converge monotonically and linearly to the range of the rational function if the degree of the Bernstein expansion is elevated. If V is subdivided then the convergence is quadratic with respect to the maximum of the diameters of the subsimplices.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Titi, Jihad</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:title>Convergence of the Simplicial Rational Bernstein Form</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-03T15:12:34Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-03T15:12:34Z</dc:date>
    <dc:creator>Hamadneh, Tareq</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet