Publikation: Interpreting neural decoding models using grouped model reliance
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Machine learning algorithms are becoming increasingly popular for decoding psychological constructs based on neural data. However, as a step towards bridging the gap between theory-driven cognitive neuroscience and data-driven decoding approaches, there is a need for methods that allow to interpret trained decoding models. The present study demonstrates grouped model reliance as a model-agnostic permutation-based approach to this problem. Grouped model reliance indicates the extent to which a trained model relies on conceptually related groups of variables, such as frequency bands or regions of interest in electroencephalographic (EEG) data. As a case study to demonstrate the method, random forest and support vector machine models were trained on within-participant single-trial EEG data from a Sternberg working memory task. Participants were asked to memorize a sequence of digits (0–9), varying randomly in length between one, four and seven digits, where EEG recordings for working memory load estimation were taken from a 3-second retention interval. The present results confirm previous findings insofar as both random forest and support vector machine models relied on alpha-band activity in most subjects. However, as revealed by further analyses, patterns in frequency and topography varied considerably between individuals, pointing to more pronounced inter-individual differences than previously reported.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VALENTIN, Simon, Maximilian HARKOTTE, Tzvetan G. POPOV, 2020. Interpreting neural decoding models using grouped model reliance. In: PLoS Computational Biology. Public Library of Science (PLoS). 2020, 16(1), e1007148. eISSN 1553-7358. Available under: doi: 10.1371/journal.pcbi.1007148BibTex
@article{Valentin2020-01Inter-49265, year={2020}, doi={10.1371/journal.pcbi.1007148}, title={Interpreting neural decoding models using grouped model reliance}, number={1}, volume={16}, journal={PLoS Computational Biology}, author={Valentin, Simon and Harkotte, Maximilian and Popov, Tzvetan G.}, note={Article Number: e1007148} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49265"> <dc:contributor>Harkotte, Maximilian</dc:contributor> <dcterms:abstract xml:lang="eng">Machine learning algorithms are becoming increasingly popular for decoding psychological constructs based on neural data. However, as a step towards bridging the gap between theory-driven cognitive neuroscience and data-driven decoding approaches, there is a need for methods that allow to interpret trained decoding models. The present study demonstrates grouped model reliance as a model-agnostic permutation-based approach to this problem. Grouped model reliance indicates the extent to which a trained model relies on conceptually related groups of variables, such as frequency bands or regions of interest in electroencephalographic (EEG) data. As a case study to demonstrate the method, random forest and support vector machine models were trained on within-participant single-trial EEG data from a Sternberg working memory task. Participants were asked to memorize a sequence of digits (0–9), varying randomly in length between one, four and seven digits, where EEG recordings for working memory load estimation were taken from a 3-second retention interval. The present results confirm previous findings insofar as both random forest and support vector machine models relied on alpha-band activity in most subjects. However, as revealed by further analyses, patterns in frequency and topography varied considerably between individuals, pointing to more pronounced inter-individual differences than previously reported.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T08:55:19Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49265/1/Valentin_2-1b2p0oaw030ow3.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Popov, Tzvetan G.</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T08:55:19Z</dc:date> <dcterms:title>Interpreting neural decoding models using grouped model reliance</dcterms:title> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:issued>2020-01</dcterms:issued> <dc:creator>Popov, Tzvetan G.</dc:creator> <dc:creator>Valentin, Simon</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Harkotte, Maximilian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Valentin, Simon</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49265"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49265/1/Valentin_2-1b2p0oaw030ow3.pdf"/> </rdf:Description> </rdf:RDF>