Publikation: Mining Frequent Synchronous Patterns based on Item Cover Similarity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In previous work we presented CoCoNAD (Continuous-time Closed Neuron Assembly Detection), a method to find significant synchronous patterns in parallel point processes with the goal to analyze parallel neural spike trains in neurobiology. A drawback of CoCoNAD and its accompanying methodology of pattern spectrum filtering (PSF) and pattern set reduction (PSR) is that it judges the (statistical) significance of a pattern only by the number of synchronous occurrences (support). However, the same number of occurrences can be significant for patterns consisting of items with a generally low occurrence rate, but explainable as a chance event for patterns consisting of items with a generally high occurrence rate, simply because more item occurrences produce more chance coincidences of items. In order to amend this drawback, we present in this paper an extension of the recently introduced CoCoNAD variant that is based on influence map overlap support (which takes both the number of synchronous events and the precision of synchrony into account), namely by transferring the idea of Jaccard item set mining to this setting: by basing pattern spectrum filtering upon item cover similarity measures, the number of coincidences is related to the item occurrence frequencies, which leads to an improved sensitivity for detecting synchronous events (or parallel episodes) in sequence data. We demonstrate the improved performance of our method by extensive experiments on artificial data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EZENNAYA-GOMEZ, Salatiel, Christian BORGELT, 2018. Mining Frequent Synchronous Patterns based on Item Cover Similarity. In: International Journal of Computational Intelligence Systems. 2018, 11(1), pp. 525-539. ISSN 1875-6891. eISSN 1875-6883. Available under: doi: 10.2991/ijcis.11.1.39BibTex
@article{EzennayaGomez2018Minin-45355, year={2018}, doi={10.2991/ijcis.11.1.39}, title={Mining Frequent Synchronous Patterns based on Item Cover Similarity}, number={1}, volume={11}, issn={1875-6891}, journal={International Journal of Computational Intelligence Systems}, pages={525--539}, author={Ezennaya-Gomez, Salatiel and Borgelt, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45355"> <dc:creator>Borgelt, Christian</dc:creator> <dc:contributor>Ezennaya-Gomez, Salatiel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Mining Frequent Synchronous Patterns based on Item Cover Similarity</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-07T13:23:57Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Ezennaya-Gomez, Salatiel</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45355/1/Ezennaya-Gomez_2-1b2j5q1s61f8w3.pdf"/> <dcterms:issued>2018</dcterms:issued> <dcterms:abstract xml:lang="eng">In previous work we presented CoCoNAD (Continuous-time Closed Neuron Assembly Detection), a method to find significant synchronous patterns in parallel point processes with the goal to analyze parallel neural spike trains in neurobiology. A drawback of CoCoNAD and its accompanying methodology of pattern spectrum filtering (PSF) and pattern set reduction (PSR) is that it judges the (statistical) significance of a pattern only by the number of synchronous occurrences (support). However, the same number of occurrences can be significant for patterns consisting of items with a generally low occurrence rate, but explainable as a chance event for patterns consisting of items with a generally high occurrence rate, simply because more item occurrences produce more chance coincidences of items. In order to amend this drawback, we present in this paper an extension of the recently introduced CoCoNAD variant that is based on influence map overlap support (which takes both the number of synchronous events and the precision of synchrony into account), namely by transferring the idea of Jaccard item set mining to this setting: by basing pattern spectrum filtering upon item cover similarity measures, the number of coincidences is related to the item occurrence frequencies, which leads to an improved sensitivity for detecting synchronous events (or parallel episodes) in sequence data. We demonstrate the improved performance of our method by extensive experiments on artificial data sets.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-07T13:23:57Z</dcterms:available> <dc:contributor>Borgelt, Christian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45355/1/Ezennaya-Gomez_2-1b2j5q1s61f8w3.pdf"/> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45355"/> </rdf:Description> </rdf:RDF>