Publikation: Kuykian fields
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Forum Mathematicum. 2012, 24(5). ISSN 0933-7741. eISSN 1435-5337. Available under: doi: 10.1515/form.2011.094
Zusammenfassung
The Kuykian conjecture for a Hilbertian field K says that if is an abelian variety, then every intermediate field of is Hilbertian. We prove the Kuykian conjecture in the following cases: (a) K is finitely generated (over its prime field). (b) for almost all , where F is a finitely generated field. (c), where F is the quotient field of a complete local domain of dimension at least 2.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Hilbertian fields, abelian varieties, torsion points
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FEHM, Arno, Moshe JARDEN, Sebastian PETERSEN, 2012. Kuykian fields. In: Forum Mathematicum. 2012, 24(5). ISSN 0933-7741. eISSN 1435-5337. Available under: doi: 10.1515/form.2011.094BibTex
@article{Fehm2012Kuyki-23249, year={2012}, doi={10.1515/form.2011.094}, title={Kuykian fields}, number={5}, volume={24}, issn={0933-7741}, journal={Forum Mathematicum}, author={Fehm, Arno and Jarden, Moshe and Petersen, Sebastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23249"> <dcterms:title>Kuykian fields</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Jarden, Moshe</dc:contributor> <dc:creator>Petersen, Sebastian</dc:creator> <dc:contributor>Petersen, Sebastian</dc:contributor> <dc:creator>Jarden, Moshe</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T07:02:04Z</dc:date> <dc:creator>Fehm, Arno</dc:creator> <dcterms:bibliographicCitation>Forum Mathematicum ; 24 (2012), 5. - S. 1013-1022</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:contributor>Fehm, Arno</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T07:02:04Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The Kuykian conjecture for a Hilbertian field K says that if is an abelian variety, then every intermediate field of is Hilbertian. We prove the Kuykian conjecture in the following cases: (a) K is finitely generated (over its prime field). (b) for almost all , where F is a finitely generated field. (c), where F is the quotient field of a complete local domain of dimension at least 2.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23249"/> <dcterms:issued>2012</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja