Publikation:

Exponential stability for wave equations with non-dissipative damping

Lade...
Vorschaubild

Datum

2008

Autor:innen

Muñoz Rivera, Jaime E.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nonlinear Analysis : theory, methods & applications. 2008, 68(9), pp. 2531-2551. ISSN 0362-546X. eISSN 1873-5215. Available under: doi: 10.1016/j.na.2007.02.022

Zusammenfassung

We consider the nonlinear wave equation utt−σ(ux)x+a(x)ut=0 in a bounded interval (0, L) C R1. The function a is allowed to change sign, but has to satisfy a = 1/LR L 0 a(x)dx > 0. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system for: (I) possibly large ||a||L∞ with small ||a(·) − a||L2, and (II) a class of pairs (a,L) with possibly negative moment R L0 a(x) sin2(pi x/L) dx. Estimates for the decay rate are also given in terms of a. Moreover, we show the global existence of smooth, small solutions to the corresponding nonlinear system if, additionally, the negative part of a is small enough.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Indefinite damping, Wave equation, Exponential stability

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MUÑOZ RIVERA, Jaime E., Reinhard RACKE, 2008. Exponential stability for wave equations with non-dissipative damping. In: Nonlinear Analysis : theory, methods & applications. 2008, 68(9), pp. 2531-2551. ISSN 0362-546X. eISSN 1873-5215. Available under: doi: 10.1016/j.na.2007.02.022
BibTex
@article{MunozRivera2008Expon-737,
  year={2008},
  doi={10.1016/j.na.2007.02.022},
  title={Exponential stability for wave equations with non-dissipative damping},
  number={9},
  volume={68},
  issn={0362-546X},
  journal={Nonlinear Analysis : theory, methods & applications},
  pages={2531--2551},
  author={Muñoz Rivera, Jaime E. and Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/737">
    <dcterms:title>Exponential stability for wave equations with non-dissipative damping</dcterms:title>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/737"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>First publ. in: Nonlinear Analysis: Theory, Methods &amp; Applications 68 (2008), 9, pp. 2531-2551</dcterms:bibliographicCitation>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/737/1/Exponential_stability_for_wave_equations_with_non_dissipative_damping.pdf"/>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/737/1/Exponential_stability_for_wave_equations_with_non_dissipative_damping.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:40Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We consider the nonlinear wave equation utt−σ(ux)x+a(x)ut=0 in a bounded interval (0, L) C R1. The function a is allowed to change sign, but has to satisfy a = 1/LR L 0 a(x)dx &gt; 0. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system for: (I) possibly large ||a||L∞  with small ||a(·) − a||L2, and (II) a class of pairs (a,L) with possibly negative moment R L0 a(x) sin2(pi x/L) dx. Estimates for the decay rate are also given in terms of a. Moreover, we show the global existence of smooth, small solutions to the corresponding nonlinear system if, additionally, the negative part of a is small enough.</dcterms:abstract>
    <dc:creator>Muñoz Rivera, Jaime E.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:40Z</dcterms:available>
    <dc:contributor>Muñoz Rivera, Jaime E.</dc:contributor>
    <dc:format>application/pdf</dc:format>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen