Publikation: Exponential stability for wave equations with non-dissipative damping
Lade...
Dateien
Datum
2008
Autor:innen
Muñoz Rivera, Jaime E.
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nonlinear Analysis : theory, methods & applications. 2008, 68(9), pp. 2531-2551. ISSN 0362-546X. eISSN 1873-5215. Available under: doi: 10.1016/j.na.2007.02.022
Zusammenfassung
We consider the nonlinear wave equation utt−σ(ux)x+a(x)ut=0 in a bounded interval (0, L) C R1. The function a is allowed to change sign, but has to satisfy a = 1/LR L 0 a(x)dx > 0. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system for: (I) possibly large ||a||L∞ with small ||a(·) − a||L2, and (II) a class of pairs (a,L) with possibly negative moment R L0 a(x) sin2(pi x/L) dx. Estimates for the decay rate are also given in terms of a. Moreover, we show the global existence of smooth, small solutions to the corresponding nonlinear system if, additionally, the negative part of a is small enough.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Indefinite damping, Wave equation, Exponential stability
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MUÑOZ RIVERA, Jaime E., Reinhard RACKE, 2008. Exponential stability for wave equations with non-dissipative damping. In: Nonlinear Analysis : theory, methods & applications. 2008, 68(9), pp. 2531-2551. ISSN 0362-546X. eISSN 1873-5215. Available under: doi: 10.1016/j.na.2007.02.022BibTex
@article{MunozRivera2008Expon-737, year={2008}, doi={10.1016/j.na.2007.02.022}, title={Exponential stability for wave equations with non-dissipative damping}, number={9}, volume={68}, issn={0362-546X}, journal={Nonlinear Analysis : theory, methods & applications}, pages={2531--2551}, author={Muñoz Rivera, Jaime E. and Racke, Reinhard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/737"> <dcterms:title>Exponential stability for wave equations with non-dissipative damping</dcterms:title> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/737"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>First publ. in: Nonlinear Analysis: Theory, Methods & Applications 68 (2008), 9, pp. 2531-2551</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/737/1/Exponential_stability_for_wave_equations_with_non_dissipative_damping.pdf"/> <dc:creator>Racke, Reinhard</dc:creator> <dcterms:issued>2008</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Racke, Reinhard</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/737/1/Exponential_stability_for_wave_equations_with_non_dissipative_damping.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:40Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We consider the nonlinear wave equation utt−σ(ux)x+a(x)ut=0 in a bounded interval (0, L) C R1. The function a is allowed to change sign, but has to satisfy a = 1/LR L 0 a(x)dx > 0. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system for: (I) possibly large ||a||L∞ with small ||a(·) − a||L2, and (II) a class of pairs (a,L) with possibly negative moment R L0 a(x) sin2(pi x/L) dx. Estimates for the decay rate are also given in terms of a. Moreover, we show the global existence of smooth, small solutions to the corresponding nonlinear system if, additionally, the negative part of a is small enough.</dcterms:abstract> <dc:creator>Muñoz Rivera, Jaime E.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:40Z</dcterms:available> <dc:contributor>Muñoz Rivera, Jaime E.</dc:contributor> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja