Publikation: Purple Feed : Identifying High Consensus News Posts on Social Media
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Although diverse news stories are actively posted on social media, readers often focus on the news which reinforces their pre-existing views, leading to 'filter bubble' effects. To combat this, some recent systems expose and nudge readers toward stories with different points of view. One example is the Wall Street Journal's 'Blue Feed, Red Feed' system, which presents posts from biased publishers on each side of a topic. However, these systems have had limited success. We present a complementary approach which identifies high consensus 'purple' posts that generate similar reactions from both 'blue' and 'red' readers. We define and operationalize consensus for news posts on Twitter in the context of US politics. We show that high consensus posts can be identified and discuss their empirical properties. We present a method for automatically identifying high and low consensus news posts on Twitter, which can work at scale across many publishers. To do this, we propose a novel category of audience leaning based features, which we show are well suited to this task. Finally, we present our 'Purple Feed' system which highlights high consensus posts from publishers on both sides of the political spectrum.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BABAEI, Mahmoudreza, Juhi KULSHRESTHA, Abhijnan CHAKRABORTY, Fabrício BENEVENUTO, Krishna P. GUMMADI, Adrian WELLER, 2018. Purple Feed : Identifying High Consensus News Posts on Social Media. AIES '18 : 2018 AAAI/ACM Conference on AI, Ethics, and Society. New Orleans, LA, 2. Feb. 2018 - 3. Feb. 2018. In: FURMAN, Jason, ed. and others. AIES '18 : Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. New York, NY: ACM, 2018, pp. 10-16. ISBN 978-1-4503-6012-8. Available under: doi: 10.1145/3278721.3278761BibTex
@inproceedings{Babaei2018Purpl-53947, year={2018}, doi={10.1145/3278721.3278761}, title={Purple Feed : Identifying High Consensus News Posts on Social Media}, isbn={978-1-4503-6012-8}, publisher={ACM}, address={New York, NY}, booktitle={AIES '18 : Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society}, pages={10--16}, editor={Furman, Jason}, author={Babaei, Mahmoudreza and Kulshrestha, Juhi and Chakraborty, Abhijnan and Benevenuto, Fabrício and Gummadi, Krishna P. and Weller, Adrian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53947"> <dc:contributor>Gummadi, Krishna P.</dc:contributor> <dc:creator>Kulshrestha, Juhi</dc:creator> <dc:creator>Gummadi, Krishna P.</dc:creator> <dc:contributor>Chakraborty, Abhijnan</dc:contributor> <dc:contributor>Benevenuto, Fabrício</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Chakraborty, Abhijnan</dc:creator> <dcterms:issued>2018</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Benevenuto, Fabrício</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53947"/> <dc:contributor>Weller, Adrian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:47:26Z</dcterms:available> <dc:creator>Babaei, Mahmoudreza</dc:creator> <dc:contributor>Kulshrestha, Juhi</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:47:26Z</dc:date> <dcterms:abstract xml:lang="eng">Although diverse news stories are actively posted on social media, readers often focus on the news which reinforces their pre-existing views, leading to 'filter bubble' effects. To combat this, some recent systems expose and nudge readers toward stories with different points of view. One example is the Wall Street Journal's 'Blue Feed, Red Feed' system, which presents posts from biased publishers on each side of a topic. However, these systems have had limited success. We present a complementary approach which identifies high consensus 'purple' posts that generate similar reactions from both 'blue' and 'red' readers. We define and operationalize consensus for news posts on Twitter in the context of US politics. We show that high consensus posts can be identified and discuss their empirical properties. We present a method for automatically identifying high and low consensus news posts on Twitter, which can work at scale across many publishers. To do this, we propose a novel category of audience leaning based features, which we show are well suited to this task. Finally, we present our 'Purple Feed' system which highlights high consensus posts from publishers on both sides of the political spectrum.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Purple Feed : Identifying High Consensus News Posts on Social Media</dcterms:title> <dc:creator>Weller, Adrian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Babaei, Mahmoudreza</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>