Publikation:

Purple Feed : Identifying High Consensus News Posts on Social Media

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Babaei, Mahmoudreza
Chakraborty, Abhijnan
Benevenuto, Fabrício
Gummadi, Krishna P.
Weller, Adrian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

FURMAN, Jason, ed. and others. AIES '18 : Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. New York, NY: ACM, 2018, pp. 10-16. ISBN 978-1-4503-6012-8. Available under: doi: 10.1145/3278721.3278761

Zusammenfassung

Although diverse news stories are actively posted on social media, readers often focus on the news which reinforces their pre-existing views, leading to 'filter bubble' effects. To combat this, some recent systems expose and nudge readers toward stories with different points of view. One example is the Wall Street Journal's 'Blue Feed, Red Feed' system, which presents posts from biased publishers on each side of a topic. However, these systems have had limited success. We present a complementary approach which identifies high consensus 'purple' posts that generate similar reactions from both 'blue' and 'red' readers. We define and operationalize consensus for news posts on Twitter in the context of US politics. We show that high consensus posts can be identified and discuss their empirical properties. We present a method for automatically identifying high and low consensus news posts on Twitter, which can work at scale across many publishers. To do this, we propose a novel category of audience leaning based features, which we show are well suited to this task. Finally, we present our 'Purple Feed' system which highlights high consensus posts from publishers on both sides of the political spectrum.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

AIES '18 : 2018 AAAI/ACM Conference on AI, Ethics, and Society, 2. Feb. 2018 - 3. Feb. 2018, New Orleans, LA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BABAEI, Mahmoudreza, Juhi KULSHRESTHA, Abhijnan CHAKRABORTY, Fabrício BENEVENUTO, Krishna P. GUMMADI, Adrian WELLER, 2018. Purple Feed : Identifying High Consensus News Posts on Social Media. AIES '18 : 2018 AAAI/ACM Conference on AI, Ethics, and Society. New Orleans, LA, 2. Feb. 2018 - 3. Feb. 2018. In: FURMAN, Jason, ed. and others. AIES '18 : Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. New York, NY: ACM, 2018, pp. 10-16. ISBN 978-1-4503-6012-8. Available under: doi: 10.1145/3278721.3278761
BibTex
@inproceedings{Babaei2018Purpl-53947,
  year={2018},
  doi={10.1145/3278721.3278761},
  title={Purple Feed : Identifying High Consensus News Posts on Social Media},
  isbn={978-1-4503-6012-8},
  publisher={ACM},
  address={New York, NY},
  booktitle={AIES '18 : Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society},
  pages={10--16},
  editor={Furman, Jason},
  author={Babaei, Mahmoudreza and Kulshrestha, Juhi and Chakraborty, Abhijnan and Benevenuto, Fabrício and Gummadi, Krishna P. and Weller, Adrian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53947">
    <dc:contributor>Gummadi, Krishna P.</dc:contributor>
    <dc:creator>Kulshrestha, Juhi</dc:creator>
    <dc:creator>Gummadi, Krishna P.</dc:creator>
    <dc:contributor>Chakraborty, Abhijnan</dc:contributor>
    <dc:contributor>Benevenuto, Fabrício</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Chakraborty, Abhijnan</dc:creator>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Benevenuto, Fabrício</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53947"/>
    <dc:contributor>Weller, Adrian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:47:26Z</dcterms:available>
    <dc:creator>Babaei, Mahmoudreza</dc:creator>
    <dc:contributor>Kulshrestha, Juhi</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:47:26Z</dc:date>
    <dcterms:abstract xml:lang="eng">Although diverse news stories are actively posted on social media, readers often focus on the news which reinforces their pre-existing views, leading to 'filter bubble' effects. To combat this, some recent systems expose and nudge readers toward stories with different points of view. One example is the Wall Street Journal's 'Blue Feed, Red Feed' system, which presents posts from biased publishers on each side of a topic. However, these systems have had limited success. We present a complementary approach which identifies high consensus 'purple' posts that generate similar reactions from both 'blue' and 'red' readers. We define and operationalize consensus for news posts on Twitter in the context of US politics. We show that high consensus posts can be identified and discuss their empirical properties. We present a method for automatically identifying high and low consensus news posts on Twitter, which can work at scale across many publishers. To do this, we propose a novel category of audience leaning based features, which we show are well suited to this task. Finally, we present our 'Purple Feed' system which highlights high consensus posts from publishers on both sides of the political spectrum.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Purple Feed : Identifying High Consensus News Posts on Social Media</dcterms:title>
    <dc:creator>Weller, Adrian</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Babaei, Mahmoudreza</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen