Publikation: Identifying domains of applicability of machine learning models for materials science
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Although machine learning (ML) models promise to substantially accelerate the discovery of novel materials, their performance is often still insufficient to draw reliable conclusions. Improved ML models are therefore actively researched, but their design is currently guided mainly by monitoring the average model test error. This can render different models indistinguishable although their performance differs substantially across materials, or it can make a model appear generally insufficient while it actually works well in specific sub-domains. Here, we present a method, based on subgroup discovery, for detecting domains of applicability (DA) of models within a materials class. The utility of this approach is demonstrated by analyzing three state-of-the-art ML models for predicting the formation energy of transparent conducting oxides. We find that, despite having a mutually indistinguishable and unsatisfactory average error, the models have DAs with distinctive features and notably improved performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SUTTON, Christopher, Mario BOLEY, Luca M. GHIRINGHELLI, Matthias RUPP, Jilles VREEKEN, Matthias SCHEFFLER, 2020. Identifying domains of applicability of machine learning models for materials science. In: Nature communications. Nature Publishing Group. 2020, 11(1), 4428. eISSN 2041-1723. Available under: doi: 10.1038/s41467-020-17112-9BibTex
@article{Sutton2020Ident-51258, year={2020}, doi={10.1038/s41467-020-17112-9}, title={Identifying domains of applicability of machine learning models for materials science}, number={1}, volume={11}, journal={Nature communications}, author={Sutton, Christopher and Boley, Mario and Ghiringhelli, Luca M. and Rupp, Matthias and Vreeken, Jilles and Scheffler, Matthias}, note={Article Number: 4428} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51258"> <dc:contributor>Sutton, Christopher</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51258/1/Sutton_2-1auzvjbeeo0k13.pdf"/> <dc:creator>Ghiringhelli, Luca M.</dc:creator> <dc:creator>Vreeken, Jilles</dc:creator> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-07T14:05:45Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-07T14:05:45Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Ghiringhelli, Luca M.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Rupp, Matthias</dc:creator> <dc:contributor>Boley, Mario</dc:contributor> <dc:contributor>Scheffler, Matthias</dc:contributor> <dcterms:abstract xml:lang="eng">Although machine learning (ML) models promise to substantially accelerate the discovery of novel materials, their performance is often still insufficient to draw reliable conclusions. Improved ML models are therefore actively researched, but their design is currently guided mainly by monitoring the average model test error. This can render different models indistinguishable although their performance differs substantially across materials, or it can make a model appear generally insufficient while it actually works well in specific sub-domains. Here, we present a method, based on subgroup discovery, for detecting domains of applicability (DA) of models within a materials class. The utility of this approach is demonstrated by analyzing three state-of-the-art ML models for predicting the formation energy of transparent conducting oxides. We find that, despite having a mutually indistinguishable and unsatisfactory average error, the models have DAs with distinctive features and notably improved performance.</dcterms:abstract> <dc:creator>Scheffler, Matthias</dc:creator> <dcterms:issued>2020</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51258"/> <dc:contributor>Vreeken, Jilles</dc:contributor> <dc:creator>Sutton, Christopher</dc:creator> <dc:creator>Boley, Mario</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51258/1/Sutton_2-1auzvjbeeo0k13.pdf"/> <dcterms:title>Identifying domains of applicability of machine learning models for materials science</dcterms:title> </rdf:Description> </rdf:RDF>