Publikation:

Hardy type derivations in generalized series fields

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Algebra. 2012, 351(1), pp. 185-203. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2011.11.024

Zusammenfassung

We consider the valued field K := R((/Gamma)) of generalised series (with real coefficients and monomials in a totally ordered multiplicative group /Gamma). We investigate how to endow K with a series derivation, that is a derivation that satisfies some natural properties such as commuting with infinite sums (strong linearity) and (an infinite version of) Leibniz rule. We characterize when such a derivation is of Hardy type, that is, when it behaves like di erentiation of germs of real valued functions in a Hardy field. We provide a necessary and sufficent condition for a series derivation of Hardy type to be surjective.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Salma, Mickael MATUSINSKI, 2012. Hardy type derivations in generalized series fields. In: Journal of Algebra. 2012, 351(1), pp. 185-203. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2011.11.024
BibTex
@article{Kuhlmann2012Hardy-18014,
  year={2012},
  doi={10.1016/j.jalgebra.2011.11.024},
  title={Hardy type derivations in generalized series fields},
  number={1},
  volume={351},
  issn={0021-8693},
  journal={Journal of Algebra},
  pages={185--203},
  author={Kuhlmann, Salma and Matusinski, Mickael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18014">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T10:13:50Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18014"/>
    <dcterms:title>Hardy type derivations in generalized series fields</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Matusinski, Mickael</dc:contributor>
    <dcterms:abstract xml:lang="eng">We consider the valued field K := R((/Gamma)) of generalised series (with real coefficients and monomials in a totally ordered multiplicative group /Gamma). We investigate how to endow K with a series derivation, that is a derivation that satisfies some natural properties such as commuting with infinite sums (strong linearity) and (an infinite version of) Leibniz rule. We characterize when such a derivation is of Hardy type, that is, when it behaves like di erentiation of germs of real valued functions in a Hardy field. We provide a necessary and sufficent condition for a series derivation of Hardy type to be surjective.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>Publ. in : Journal of Algebra ; 351 (2012), 1. - pp. 185-203</dcterms:bibliographicCitation>
    <dcterms:issued>2012</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T10:13:50Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Matusinski, Mickael</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen