Publikation: Singular Nature of the Elastocapillary Ridge
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The mechanical and chemical properties of soft solids are crucial to many applications in biology and surface science. Recent studies use wetting by liquid drops to probe the surface mechanics of reticulated polymer networks, leading to controversial interpretations. This controversy relates to the long-standing paradox of Young’s law for the liquid contact angle, which invokes only a horizontal force balance. Recent work shows that, for very soft materials, the solid’s surface tension plays a key role for the vertical force balance, involving a singular ridgelike deformation exactly at the point where the droplet pulls on the network. A hotly debated question is whether unexpected measurements on this singular deformation can be attributed to nonlinear bulk elasticity or whether these provide evidence for an intricate surface elasticity, known as the Shuttleworth effect. Here, we theoretically reveal the nature of the elastocapillary singularity on a hyperelastic substrate with various constitutive relations for the interfacial energy. First, we finely resolve the vicinity of the singularity using goal-adaptive finite-element simulations. This simulation confirms that bulk elasticity cannot affect the force balance at the contact line. Subsequently, we derive exact solutions of nonlinear elasticity that describe the singularity analytically. These solutions are in perfect agreement with numerics and show that both the angles and stretch at the contact line, as previously measured experimentally, consistently point to a strong Shuttleworth effect. Finally, using Noether’s theorem, we reveal the quantitative link between Young’s law, hysteresis, and the nature of the elastocapillary singularity. Our contribution closes the issue of the missing normal force at the contact line and opens up the development of modern techniques in polymer surface science.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PANDEY, Apurva, Bruno ANDREOTTI, Stefan KARPITSCHKA, Gertjan VAN ZWIETEN, E. Harald VAN BRUMMELEN, Jacco H. SNOEIJER, 2020. Singular Nature of the Elastocapillary Ridge. In: Physical Review X. American Physical Society (APS). 2020, 10(3), 031067. eISSN 2160-3308. Available under: doi: 10.1103/physrevx.10.031067BibTex
@article{Pandey2020Singu-67431, year={2020}, doi={10.1103/physrevx.10.031067}, title={Singular Nature of the Elastocapillary Ridge}, number={3}, volume={10}, journal={Physical Review X}, author={Pandey, Apurva and Andreotti, Bruno and Karpitschka, Stefan and van Zwieten, Gertjan and van Brummelen, E. Harald and Snoeijer, Jacco H.}, note={Article Number: 031067} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67431"> <dc:creator>van Zwieten, Gertjan</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67431/4/Pandey_2-1am0mhg2zkor20.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Snoeijer, Jacco H.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67431"/> <dcterms:title>Singular Nature of the Elastocapillary Ridge</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-25T08:04:22Z</dc:date> <dc:contributor>van Brummelen, E. Harald</dc:contributor> <dc:contributor>Pandey, Apurva</dc:contributor> <dc:creator>Andreotti, Bruno</dc:creator> <dc:creator>Pandey, Apurva</dc:creator> <dc:creator>Karpitschka, Stefan</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-25T08:04:22Z</dcterms:available> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Andreotti, Bruno</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract>The mechanical and chemical properties of soft solids are crucial to many applications in biology and surface science. Recent studies use wetting by liquid drops to probe the surface mechanics of reticulated polymer networks, leading to controversial interpretations. This controversy relates to the long-standing paradox of Young’s law for the liquid contact angle, which invokes only a horizontal force balance. Recent work shows that, for very soft materials, the solid’s surface tension plays a key role for the vertical force balance, involving a singular ridgelike deformation exactly at the point where the droplet pulls on the network. A hotly debated question is whether unexpected measurements on this singular deformation can be attributed to nonlinear bulk elasticity or whether these provide evidence for an intricate surface elasticity, known as the Shuttleworth effect. Here, we theoretically reveal the nature of the elastocapillary singularity on a hyperelastic substrate with various constitutive relations for the interfacial energy. First, we finely resolve the vicinity of the singularity using goal-adaptive finite-element simulations. This simulation confirms that bulk elasticity cannot affect the force balance at the contact line. Subsequently, we derive exact solutions of nonlinear elasticity that describe the singularity analytically. These solutions are in perfect agreement with numerics and show that both the angles and stretch at the contact line, as previously measured experimentally, consistently point to a strong Shuttleworth effect. Finally, using Noether’s theorem, we reveal the quantitative link between Young’s law, hysteresis, and the nature of the elastocapillary singularity. Our contribution closes the issue of the missing normal force at the contact line and opens up the development of modern techniques in polymer surface science.</dcterms:abstract> <dc:contributor>van Zwieten, Gertjan</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67431/4/Pandey_2-1am0mhg2zkor20.pdf"/> <dc:creator>Snoeijer, Jacco H.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Karpitschka, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>van Brummelen, E. Harald</dc:creator> </rdf:Description> </rdf:RDF>