Publikation:

Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results

Lade...
Vorschaubild

Dateien

Seebacher_265328.pdf
Seebacher_265328.pdfGröße: 743.01 KBDownloads: 406

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA. 2013

Zusammenfassung

We present an approach developed in course of the VAST 2013 Mini Challenge: Visualize the Box Office. We follow a similaritydriven methodology to predict ratings and box office results based on historic data. An array of interactive visualizations allow analysts to explore structured and unstructured data, activate their domain background knowledge, and come up with predictions as a weighted sum of historically observed figures. We describe the workflow, our developed system, present results obtained during the Challenge execution, and discuss our method in light of extension possibilities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE VIS, 13. Okt. 2013 - 18. Okt. 2013, Atlanta, Georgia, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AL-MASOUDI, Feeras, Daniel SEEBACHER, Mario SCHREINER, Manuel STEIN, Christian ROHRDANTZ, Fabian FISCHER, Svenja SIMON, Tobias SCHRECK, Daniel A. KEIM, 2013. Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results. IEEE VIS. Atlanta, Georgia, USA, 13. Okt. 2013 - 18. Okt. 2013. In: VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA. 2013
BibTex
@inproceedings{AlMasoudi2013Simil-26532,
  year={2013},
  title={Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results},
  booktitle={VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA},
  author={Al-Masoudi, Feeras and Seebacher, Daniel and Schreiner, Mario and Stein, Manuel and Rohrdantz, Christian and Fischer, Fabian and Simon, Svenja and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26532">
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dc:creator>Al-Masoudi, Feeras</dc:creator>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dcterms:abstract xml:lang="eng">We present an approach developed in course of the VAST 2013 Mini Challenge: Visualize the Box Office. We follow a similaritydriven methodology to predict ratings and box office results based on historic data. An array of interactive visualizations allow analysts to explore structured and unstructured data, activate their domain background knowledge, and come up with predictions as a weighted sum of historically observed figures. We describe the workflow, our developed system, present results obtained during the Challenge execution, and discuss our method in light of extension possibilities.</dcterms:abstract>
    <dcterms:bibliographicCitation>Vortrag gehalten bei: VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13-18 October 2013, Atlanta, Georgia, USA</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schreiner, Mario</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:26:10Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:26:10Z</dcterms:available>
    <dc:creator>Simon, Svenja</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Schreiner, Mario</dc:contributor>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dcterms:title>Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26532/2/Seebacher_265328.pdf"/>
    <dc:contributor>Simon, Svenja</dc:contributor>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26532/2/Seebacher_265328.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dc:contributor>Al-Masoudi, Feeras</dc:contributor>
    <dcterms:issued>2013</dcterms:issued>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26532"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen