Publikation: Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results
Lade...
Dateien
Datum
2013
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA. 2013
Zusammenfassung
We present an approach developed in course of the VAST 2013 Mini Challenge: Visualize the Box Office. We follow a similaritydriven methodology to predict ratings and box office results based on historic data. An array of interactive visualizations allow analysts to explore structured and unstructured data, activate their domain background knowledge, and come up with predictions as a weighted sum of historically observed figures. We describe the workflow, our developed system, present results obtained during the Challenge execution, and discuss our method in light of extension possibilities.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE VIS, 13. Okt. 2013 - 18. Okt. 2013, Atlanta, Georgia, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
AL-MASOUDI, Feeras, Daniel SEEBACHER, Mario SCHREINER, Manuel STEIN, Christian ROHRDANTZ, Fabian FISCHER, Svenja SIMON, Tobias SCHRECK, Daniel A. KEIM, 2013. Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results. IEEE VIS. Atlanta, Georgia, USA, 13. Okt. 2013 - 18. Okt. 2013. In: VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA. 2013BibTex
@inproceedings{AlMasoudi2013Simil-26532, year={2013}, title={Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results}, booktitle={VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA}, author={Al-Masoudi, Feeras and Seebacher, Daniel and Schreiner, Mario and Stein, Manuel and Rohrdantz, Christian and Fischer, Fabian and Simon, Svenja and Schreck, Tobias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26532"> <dc:contributor>Stein, Manuel</dc:contributor> <dc:contributor>Fischer, Fabian</dc:contributor> <dc:creator>Al-Masoudi, Feeras</dc:creator> <dc:creator>Fischer, Fabian</dc:creator> <dcterms:abstract xml:lang="eng">We present an approach developed in course of the VAST 2013 Mini Challenge: Visualize the Box Office. We follow a similaritydriven methodology to predict ratings and box office results based on historic data. An array of interactive visualizations allow analysts to explore structured and unstructured data, activate their domain background knowledge, and come up with predictions as a weighted sum of historically observed figures. We describe the workflow, our developed system, present results obtained during the Challenge execution, and discuss our method in light of extension possibilities.</dcterms:abstract> <dcterms:bibliographicCitation>Vortrag gehalten bei: VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13-18 October 2013, Atlanta, Georgia, USA</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Schreiner, Mario</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:26:10Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:26:10Z</dcterms:available> <dc:creator>Simon, Svenja</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Schreiner, Mario</dc:contributor> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dcterms:title>Similarity-Driven Visual-Interactive Prediction of Movie Ratings and Box Office Results</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26532/2/Seebacher_265328.pdf"/> <dc:contributor>Simon, Svenja</dc:contributor> <dc:creator>Stein, Manuel</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26532/2/Seebacher_265328.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:contributor>Al-Masoudi, Feeras</dc:contributor> <dcterms:issued>2013</dcterms:issued> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Seebacher, Daniel</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26532"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja