Publikation:

A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Li, Jing
Zhang, Peng
Wan, Min
Fang, Can

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Multimedia Tools and Applications. 2015, 74(23), pp. 10535-10558. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-014-2186-9

Zusammenfassung

Fluoroscopic images depicting the movement of lung tumor lesions along with patients’ respirations are essential in contemporary image-guided lung cancer radiotherapy, as the accurate delivery of radiation dose on lung tumor lesions can be facilitated with the help of fluoroscopic images. However, the quality of fluoroscopic images is often not high, and several factors including image noise, artifact, ribs occlusion often prevent the tumor lesion from being accurate localized. In this study, a novel marker-less lung tumor localization strategy is proposed. Unlike conventional lung tumor localization strategies, it doesn’t require placing external surrogates on patients or implanting internal fiducial markers in patients. Thus ambiguous movement correlations between moving tumor lesions and surrogates as well as the risk of patients pneumothorax can be totally avoided. In this new strategy, fluoroscopic images are first decomposed into low-rank and sparse components via the split Bregman method, and then spectral clustering techniques are incorporated for similarity learning to realize the tumor localization task. Clinical data obtained from 60 patients with lung tumor lesions is utilized for experimental evaluation, and promising results obtained by the new strategy are demonstrated from the statistical point of view.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Tumor localization; Low-rank and sparse decomposition; Similarity learning; Spectral clustering

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HUANG, Wei, Jing LI, Peng ZHANG, Min WAN, Can FANG, Minmin SHEN, 2015. A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning. In: Multimedia Tools and Applications. 2015, 74(23), pp. 10535-10558. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-014-2186-9
BibTex
@article{Huang2015-12novel-30224,
  year={2015},
  doi={10.1007/s11042-014-2186-9},
  title={A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning},
  number={23},
  volume={74},
  issn={1380-7501},
  journal={Multimedia Tools and Applications},
  pages={10535--10558},
  author={Huang, Wei and Li, Jing and Zhang, Peng and Wan, Min and Fang, Can and Shen, Minmin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30224">
    <dc:language>eng</dc:language>
    <dc:contributor>Fang, Can</dc:contributor>
    <dc:creator>Huang, Wei</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Li, Jing</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Fang, Can</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T07:51:39Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30224"/>
    <dcterms:abstract xml:lang="eng">Fluoroscopic images depicting the movement of lung tumor lesions along with patients’ respirations are essential in contemporary image-guided lung cancer radiotherapy, as the accurate delivery of radiation dose on lung tumor lesions can be facilitated with the help of fluoroscopic images. However, the quality of fluoroscopic images is often not high, and several factors including image noise, artifact, ribs occlusion often prevent the tumor lesion from being accurate localized. In this study, a novel marker-less lung tumor localization strategy is proposed. Unlike conventional lung tumor localization strategies, it doesn’t require placing external surrogates on patients or implanting internal fiducial markers in patients. Thus ambiguous movement correlations between moving tumor lesions and surrogates as well as the risk of patients pneumothorax can be totally avoided. In this new strategy, fluoroscopic images are first decomposed into low-rank and sparse components via the split Bregman method, and then spectral clustering techniques are incorporated for similarity learning to realize the tumor localization task. Clinical data obtained from 60 patients with lung tumor lesions is utilized for experimental evaluation, and promising results obtained by the new strategy are demonstrated from the statistical point of view.</dcterms:abstract>
    <dc:contributor>Zhang, Peng</dc:contributor>
    <dc:contributor>Huang, Wei</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Li, Jing</dc:contributor>
    <dcterms:title>A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning</dcterms:title>
    <dc:creator>Zhang, Peng</dc:creator>
    <dc:creator>Wan, Min</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T07:51:39Z</dc:date>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:issued>2015-12</dcterms:issued>
    <dc:contributor>Wan, Min</dc:contributor>
    <dc:creator>Shen, Minmin</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen