Publikation: A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Fluoroscopic images depicting the movement of lung tumor lesions along with patients’ respirations are essential in contemporary image-guided lung cancer radiotherapy, as the accurate delivery of radiation dose on lung tumor lesions can be facilitated with the help of fluoroscopic images. However, the quality of fluoroscopic images is often not high, and several factors including image noise, artifact, ribs occlusion often prevent the tumor lesion from being accurate localized. In this study, a novel marker-less lung tumor localization strategy is proposed. Unlike conventional lung tumor localization strategies, it doesn’t require placing external surrogates on patients or implanting internal fiducial markers in patients. Thus ambiguous movement correlations between moving tumor lesions and surrogates as well as the risk of patients pneumothorax can be totally avoided. In this new strategy, fluoroscopic images are first decomposed into low-rank and sparse components via the split Bregman method, and then spectral clustering techniques are incorporated for similarity learning to realize the tumor localization task. Clinical data obtained from 60 patients with lung tumor lesions is utilized for experimental evaluation, and promising results obtained by the new strategy are demonstrated from the statistical point of view.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HUANG, Wei, Jing LI, Peng ZHANG, Min WAN, Can FANG, Minmin SHEN, 2015. A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning. In: Multimedia Tools and Applications. 2015, 74(23), pp. 10535-10558. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-014-2186-9BibTex
@article{Huang2015-12novel-30224, year={2015}, doi={10.1007/s11042-014-2186-9}, title={A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning}, number={23}, volume={74}, issn={1380-7501}, journal={Multimedia Tools and Applications}, pages={10535--10558}, author={Huang, Wei and Li, Jing and Zhang, Peng and Wan, Min and Fang, Can and Shen, Minmin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30224"> <dc:language>eng</dc:language> <dc:contributor>Fang, Can</dc:contributor> <dc:creator>Huang, Wei</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Li, Jing</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Fang, Can</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T07:51:39Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30224"/> <dcterms:abstract xml:lang="eng">Fluoroscopic images depicting the movement of lung tumor lesions along with patients’ respirations are essential in contemporary image-guided lung cancer radiotherapy, as the accurate delivery of radiation dose on lung tumor lesions can be facilitated with the help of fluoroscopic images. However, the quality of fluoroscopic images is often not high, and several factors including image noise, artifact, ribs occlusion often prevent the tumor lesion from being accurate localized. In this study, a novel marker-less lung tumor localization strategy is proposed. Unlike conventional lung tumor localization strategies, it doesn’t require placing external surrogates on patients or implanting internal fiducial markers in patients. Thus ambiguous movement correlations between moving tumor lesions and surrogates as well as the risk of patients pneumothorax can be totally avoided. In this new strategy, fluoroscopic images are first decomposed into low-rank and sparse components via the split Bregman method, and then spectral clustering techniques are incorporated for similarity learning to realize the tumor localization task. Clinical data obtained from 60 patients with lung tumor lesions is utilized for experimental evaluation, and promising results obtained by the new strategy are demonstrated from the statistical point of view.</dcterms:abstract> <dc:contributor>Zhang, Peng</dc:contributor> <dc:contributor>Huang, Wei</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Li, Jing</dc:contributor> <dcterms:title>A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning</dcterms:title> <dc:creator>Zhang, Peng</dc:creator> <dc:creator>Wan, Min</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T07:51:39Z</dc:date> <dc:contributor>Shen, Minmin</dc:contributor> <dcterms:issued>2015-12</dcterms:issued> <dc:contributor>Wan, Min</dc:contributor> <dc:creator>Shen, Minmin</dc:creator> </rdf:Description> </rdf:RDF>