Publikation: Wellposedness of the tornado-hurricane equations
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Discrete & Continuous Dynamical Systems - Series A. American Institute of Mathematical Sciences (AIMS). 2010, 26(2), pp. 649-664. ISSN 1078-0947. eISSN 1553-5231. Available under: doi: 10.3934/dcds.2010.26.649
Zusammenfassung
We prove local-in-time existence of a unique mild solution for the tornado-hurricane equations in a Hilbert space setting. The wellposedness is shown simultaneously in a halfspace, a layer, and a cylinder and for various types of boundary conditions which admit discontinuities at the edges of the cylinder. By an approach based on symmetric forms we first prove maximal regularity for a linearized system. An application of the contraction mapping principle then yields the existence of a unique local-in-time mild solution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
cyclones, Weakly compressible Navier-Stokes equations, wellposedness
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SAAL, Jürgen, 2010. Wellposedness of the tornado-hurricane equations. In: Discrete & Continuous Dynamical Systems - Series A. American Institute of Mathematical Sciences (AIMS). 2010, 26(2), pp. 649-664. ISSN 1078-0947. eISSN 1553-5231. Available under: doi: 10.3934/dcds.2010.26.649BibTex
@article{Saal2010Wellp-51540,
year={2010},
doi={10.3934/dcds.2010.26.649},
title={Wellposedness of the tornado-hurricane equations},
number={2},
volume={26},
issn={1078-0947},
journal={Discrete & Continuous Dynamical Systems - Series A},
pages={649--664},
author={Saal, Jürgen}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51540">
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-30T07:23:41Z</dc:date>
<dcterms:issued>2010</dcterms:issued>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:abstract xml:lang="eng">We prove local-in-time existence of a unique mild solution for the tornado-hurricane equations in a Hilbert space setting. The wellposedness is shown simultaneously in a halfspace, a layer, and a cylinder and for various types of boundary conditions which admit discontinuities at the edges of the cylinder. By an approach based on symmetric forms we first prove maximal regularity for a linearized system. An application of the contraction mapping principle then yields the existence of a unique local-in-time mild solution.</dcterms:abstract>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51540"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-30T07:23:41Z</dcterms:available>
<dcterms:title>Wellposedness of the tornado-hurricane equations</dcterms:title>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Saal, Jürgen</dc:creator>
<dc:contributor>Saal, Jürgen</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:language>eng</dc:language>
</rdf:Description>
</rdf:RDF>Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja