Publikation: Discovering Stochastic Dynamical Equations from Ecological Time Series Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Theoretical studies have shown that stochasticity can affect the dynamics of ecosystems in counterintuitive ways. However, without knowing the equations governing the dynamics of populations or ecosystems, it is difficult to ascertain the role of stochasticity in real datasets. Therefore, the inverse problem of inferring the governing stochastic equations from datasets is important. Here, we present an equation discovery methodology that takes time series data of state variables as input and outputs a stochastic differential equation. We achieve this by combining traditional approaches from stochastic calculus with the equation discovery techniques. We demonstrate the generality of the method via several applications. First, we deliberately choose various stochastic models with fundamentally different governing equations, yet they produce nearly identical steady-state distributions. We show that we can recover the correct underlying equations, and thus infer the structure of their stability, accurately from the analysis of time series data alone. We demonstrate our method on two real-world datasets—fish schooling and single-cell migration—that have vastly different spatiotemporal scales and dynamics. We illustrate various limitations and potential pitfalls of the method and how to overcome them via diagnostic measures. Finally, we provide our open-source code via a package named PyDaDDy (Python Library for Data-Driven Dynamics).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NABEEL, Arshed, Ashwin KARICHANNAVAR, Shuaib PALATHINGAL, Jitesh JHAWAR, David B. BRÜCKNER, Danny RAJ M, Vishwesha GUTTAL, 2025. Discovering Stochastic Dynamical Equations from Ecological Time Series Data. In: The American Naturalist. University of Chicago Press. 2025, 205(4), S. E100-E117. ISSN 0003-0147. eISSN 1537-5323. Verfügbar unter: doi: 10.1086/734083BibTex
@article{Nabeel2025-04-01Disco-72813, title={Discovering Stochastic Dynamical Equations from Ecological Time Series Data}, year={2025}, doi={10.1086/734083}, number={4}, volume={205}, issn={0003-0147}, journal={The American Naturalist}, pages={E100--E117}, author={Nabeel, Arshed and Karichannavar, Ashwin and Palathingal, Shuaib and Jhawar, Jitesh and Brückner, David B. and Raj M, Danny and Guttal, Vishwesha} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72813"> <dc:creator>Raj M, Danny</dc:creator> <dc:contributor>Nabeel, Arshed</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Jhawar, Jitesh</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72813"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T08:21:08Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Karichannavar, Ashwin</dc:creator> <dc:contributor>Palathingal, Shuaib</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Discovering Stochastic Dynamical Equations from Ecological Time Series Data</dcterms:title> <dc:contributor>Brückner, David B.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Palathingal, Shuaib</dc:creator> <dc:contributor>Raj M, Danny</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T08:21:08Z</dc:date> <dc:contributor>Karichannavar, Ashwin</dc:contributor> <dc:contributor>Jhawar, Jitesh</dc:contributor> <dc:creator>Brückner, David B.</dc:creator> <dc:creator>Guttal, Vishwesha</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2025-04-01</dcterms:issued> <dc:creator>Nabeel, Arshed</dc:creator> <dc:contributor>Guttal, Vishwesha</dc:contributor> <dcterms:abstract>Theoretical studies have shown that stochasticity can affect the dynamics of ecosystems in counterintuitive ways. However, without knowing the equations governing the dynamics of populations or ecosystems, it is difficult to ascertain the role of stochasticity in real datasets. Therefore, the inverse problem of inferring the governing stochastic equations from datasets is important. Here, we present an equation discovery methodology that takes time series data of state variables as input and outputs a stochastic differential equation. We achieve this by combining traditional approaches from stochastic calculus with the equation discovery techniques. We demonstrate the generality of the method via several applications. First, we deliberately choose various stochastic models with fundamentally different governing equations, yet they produce nearly identical steady-state distributions. We show that we can recover the correct underlying equations, and thus infer the structure of their stability, accurately from the analysis of time series data alone. We demonstrate our method on two real-world datasets—fish schooling and single-cell migration—that have vastly different spatiotemporal scales and dynamics. We illustrate various limitations and potential pitfalls of the method and how to overcome them via diagnostic measures. Finally, we provide our open-source code via a package named PyDaDDy (Python Library for Data-Driven Dynamics).</dcterms:abstract> </rdf:Description> </rdf:RDF>