Publikation:

Discovering Stochastic Dynamical Equations from Ecological Time Series Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Nabeel, Arshed
Karichannavar, Ashwin
Palathingal, Shuaib
Brückner, David B.
Raj M, Danny
Guttal, Vishwesha

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The American Naturalist. University of Chicago Press. 2025, 205(4), S. E100-E117. ISSN 0003-0147. eISSN 1537-5323. Verfügbar unter: doi: 10.1086/734083

Zusammenfassung

Theoretical studies have shown that stochasticity can affect the dynamics of ecosystems in counterintuitive ways. However, without knowing the equations governing the dynamics of populations or ecosystems, it is difficult to ascertain the role of stochasticity in real datasets. Therefore, the inverse problem of inferring the governing stochastic equations from datasets is important. Here, we present an equation discovery methodology that takes time series data of state variables as input and outputs a stochastic differential equation. We achieve this by combining traditional approaches from stochastic calculus with the equation discovery techniques. We demonstrate the generality of the method via several applications. First, we deliberately choose various stochastic models with fundamentally different governing equations, yet they produce nearly identical steady-state distributions. We show that we can recover the correct underlying equations, and thus infer the structure of their stability, accurately from the analysis of time series data alone. We demonstrate our method on two real-world datasets—fish schooling and single-cell migration—that have vastly different spatiotemporal scales and dynamics. We illustrate various limitations and potential pitfalls of the method and how to overcome them via diagnostic measures. Finally, we provide our open-source code via a package named PyDaDDy (Python Library for Data-Driven Dynamics).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

data-driven model discovery, Langevin dynamics, mesoscale dynamics, data-driven dynamical systems, scientific machine learning, noise-induced order

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690NABEEL, Arshed, Ashwin KARICHANNAVAR, Shuaib PALATHINGAL, Jitesh JHAWAR, David B. BRÜCKNER, Danny RAJ M, Vishwesha GUTTAL, 2025. Discovering Stochastic Dynamical Equations from Ecological Time Series Data. In: The American Naturalist. University of Chicago Press. 2025, 205(4), S. E100-E117. ISSN 0003-0147. eISSN 1537-5323. Verfügbar unter: doi: 10.1086/734083
BibTex
@article{Nabeel2025-04-01Disco-72813,
  title={Discovering Stochastic Dynamical Equations from Ecological Time Series Data},
  year={2025},
  doi={10.1086/734083},
  number={4},
  volume={205},
  issn={0003-0147},
  journal={The American Naturalist},
  pages={E100--E117},
  author={Nabeel, Arshed and Karichannavar, Ashwin and Palathingal, Shuaib and Jhawar, Jitesh and Brückner, David B. and Raj M, Danny and Guttal, Vishwesha}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72813">
    <dc:creator>Raj M, Danny</dc:creator>
    <dc:contributor>Nabeel, Arshed</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Jhawar, Jitesh</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72813"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T08:21:08Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Karichannavar, Ashwin</dc:creator>
    <dc:contributor>Palathingal, Shuaib</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Discovering Stochastic Dynamical Equations from Ecological Time Series Data</dcterms:title>
    <dc:contributor>Brückner, David B.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Palathingal, Shuaib</dc:creator>
    <dc:contributor>Raj M, Danny</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-31T08:21:08Z</dc:date>
    <dc:contributor>Karichannavar, Ashwin</dc:contributor>
    <dc:contributor>Jhawar, Jitesh</dc:contributor>
    <dc:creator>Brückner, David B.</dc:creator>
    <dc:creator>Guttal, Vishwesha</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2025-04-01</dcterms:issued>
    <dc:creator>Nabeel, Arshed</dc:creator>
    <dc:contributor>Guttal, Vishwesha</dc:contributor>
    <dcterms:abstract>Theoretical studies have shown that stochasticity can affect the dynamics of ecosystems in counterintuitive ways. However, without knowing the equations governing the dynamics of populations or ecosystems, it is difficult to ascertain the role of stochasticity in real datasets. Therefore, the inverse problem of inferring the governing stochastic equations from datasets is important. Here, we present an equation discovery methodology that takes time series data of state variables as input and outputs a stochastic differential equation. We achieve this by combining traditional approaches from stochastic calculus with the equation discovery techniques. We demonstrate the generality of the method via several applications. First, we deliberately choose various stochastic models with fundamentally different governing equations, yet they produce nearly identical steady-state distributions. We show that we can recover the correct underlying equations,
and thus infer the structure of their stability, accurately from the analysis of time series data alone. We demonstrate our method on two real-world datasets—fish schooling and single-cell migration—that have vastly different spatiotemporal scales and dynamics. We illustrate various limitations and potential pitfalls of the method and how to overcome them via diagnostic measures. Finally, we provide our open-source code via a package named PyDaDDy (Python Library for Data-Driven Dynamics).</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen