Publikation:

Density-based label placement

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Lhuillier, Antoine
Weiskopf, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Visual Computer. 2019, 35(6-8), pp. 1041-1052. ISSN 0178-2789. eISSN 1432-2315. Available under: doi: 10.1007/s00371-019-01686-7

Zusammenfassung

We introduce a versatile density-based approach to label placement that aims to put labels in uncluttered areas of an underlying 2D visualization. Our novel, image-space algorithm constructs a density map by applying kernel density estimation to the input features, i.e., the locations of the points to be labeled. In order to find a suitable position for a label where it does not overlap any features or other labels, we move it following the gradient descent of this density map. This guides labels toward nearby areas of low feature density, resulting in a layout where labels are spread around feature-dense areas. The gradient descent trajectory can be used to draw curved leaders that connect the point features to their labels. Additionally, our approach supports prioritized label placement, user-defined label-to-label and label-to-feature margins, obstacle-constrained labeling, and arbitrarily shaped labels. The proposed method is conceptually simple and can easily be implemented using OpenCV and image-processing libraries.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Automated label placement, Image-based information visualization, Kernel density estimation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LHUILLIER, Antoine, Mereke VAN GARDEREN, Daniel WEISKOPF, 2019. Density-based label placement. In: The Visual Computer. 2019, 35(6-8), pp. 1041-1052. ISSN 0178-2789. eISSN 1432-2315. Available under: doi: 10.1007/s00371-019-01686-7
BibTex
@article{Lhuillier2019-06Densi-46338,
  year={2019},
  doi={10.1007/s00371-019-01686-7},
  title={Density-based label placement},
  number={6-8},
  volume={35},
  issn={0178-2789},
  journal={The Visual Computer},
  pages={1041--1052},
  author={Lhuillier, Antoine and van Garderen, Mereke and Weiskopf, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46338">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Lhuillier, Antoine</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46338"/>
    <dc:contributor>van Garderen, Mereke</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">We introduce a versatile density-based approach to label placement that aims to put labels in uncluttered areas of an underlying 2D visualization. Our novel, image-space algorithm constructs a density map by applying kernel density estimation to the input features, i.e., the locations of the points to be labeled. In order to find a suitable position for a label where it does not overlap any features or other labels, we move it following the gradient descent of this density map. This guides labels toward nearby areas of low feature density, resulting in a layout where labels are spread around feature-dense areas. The gradient descent trajectory can be used to draw curved leaders that connect the point features to their labels. Additionally, our approach supports prioritized label placement, user-defined label-to-label and label-to-feature margins, obstacle-constrained labeling, and arbitrarily shaped labels. The proposed method is conceptually simple and can easily be implemented using OpenCV and image-processing libraries.</dcterms:abstract>
    <dcterms:title>Density-based label placement</dcterms:title>
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-11T13:50:00Z</dcterms:available>
    <dc:creator>Lhuillier, Antoine</dc:creator>
    <dc:creator>van Garderen, Mereke</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2019-06</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-11T13:50:00Z</dc:date>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen