Publikation:

Optimizing transition states via kernel-based machine learning

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Pozun, Zachary D.
Hansen, Katja
Sheppard, Daniel
Müller, Klaus-Robert
Henkelman, Graeme

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Journal of Chemical Physics. American Institute of Physics (AIP). 2012, 136(17), 174101. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4707167

Zusammenfassung

We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690POZUN, Zachary D., Katja HANSEN, Daniel SHEPPARD, Matthias RUPP, Klaus-Robert MÜLLER, Graeme HENKELMAN, 2012. Optimizing transition states via kernel-based machine learning. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2012, 136(17), 174101. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4707167
BibTex
@article{Pozun2012-05-07Optim-52494,
  year={2012},
  doi={10.1063/1.4707167},
  title={Optimizing transition states via kernel-based machine learning},
  number={17},
  volume={136},
  issn={0021-9606},
  journal={The Journal of Chemical Physics},
  author={Pozun, Zachary D. and Hansen, Katja and Sheppard, Daniel and Rupp, Matthias and Müller, Klaus-Robert and Henkelman, Graeme},
  note={Article Number: 174101}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52494">
    <dc:creator>Sheppard, Daniel</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Optimizing transition states via kernel-based machine learning</dcterms:title>
    <dc:creator>Henkelman, Graeme</dc:creator>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dc:contributor>Pozun, Zachary D.</dc:contributor>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dc:contributor>Sheppard, Daniel</dc:contributor>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T12:39:16Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hansen, Katja</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52494"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Pozun, Zachary D.</dc:creator>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:contributor>Henkelman, Graeme</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Hansen, Katja</dc:creator>
    <dcterms:issued>2012-05-07</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T12:39:16Z</dc:date>
    <dcterms:abstract xml:lang="eng">We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen