Publikation: Optimizing transition states via kernel-based machine learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POZUN, Zachary D., Katja HANSEN, Daniel SHEPPARD, Matthias RUPP, Klaus-Robert MÜLLER, Graeme HENKELMAN, 2012. Optimizing transition states via kernel-based machine learning. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2012, 136(17), 174101. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4707167BibTex
@article{Pozun2012-05-07Optim-52494,
year={2012},
doi={10.1063/1.4707167},
title={Optimizing transition states via kernel-based machine learning},
number={17},
volume={136},
issn={0021-9606},
journal={The Journal of Chemical Physics},
author={Pozun, Zachary D. and Hansen, Katja and Sheppard, Daniel and Rupp, Matthias and Müller, Klaus-Robert and Henkelman, Graeme},
note={Article Number: 174101}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52494">
<dc:creator>Sheppard, Daniel</dc:creator>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:title>Optimizing transition states via kernel-based machine learning</dcterms:title>
<dc:creator>Henkelman, Graeme</dc:creator>
<dc:creator>Müller, Klaus-Robert</dc:creator>
<dc:contributor>Pozun, Zachary D.</dc:contributor>
<dc:contributor>Rupp, Matthias</dc:contributor>
<dc:contributor>Sheppard, Daniel</dc:contributor>
<dc:creator>Rupp, Matthias</dc:creator>
<dc:language>eng</dc:language>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T12:39:16Z</dcterms:available>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:contributor>Hansen, Katja</dc:contributor>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52494"/>
<dc:rights>terms-of-use</dc:rights>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dc:creator>Pozun, Zachary D.</dc:creator>
<dc:contributor>Müller, Klaus-Robert</dc:contributor>
<dc:contributor>Henkelman, Graeme</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:creator>Hansen, Katja</dc:creator>
<dcterms:issued>2012-05-07</dcterms:issued>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T12:39:16Z</dc:date>
<dcterms:abstract xml:lang="eng">We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.</dcterms:abstract>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
</rdf:Description>
</rdf:RDF>