Publikation: Optimizing transition states via kernel-based machine learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POZUN, Zachary D., Katja HANSEN, Daniel SHEPPARD, Matthias RUPP, Klaus-Robert MÜLLER, Graeme HENKELMAN, 2012. Optimizing transition states via kernel-based machine learning. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2012, 136(17), 174101. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4707167BibTex
@article{Pozun2012-05-07Optim-52494, year={2012}, doi={10.1063/1.4707167}, title={Optimizing transition states via kernel-based machine learning}, number={17}, volume={136}, issn={0021-9606}, journal={The Journal of Chemical Physics}, author={Pozun, Zachary D. and Hansen, Katja and Sheppard, Daniel and Rupp, Matthias and Müller, Klaus-Robert and Henkelman, Graeme}, note={Article Number: 174101} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52494"> <dc:creator>Sheppard, Daniel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Optimizing transition states via kernel-based machine learning</dcterms:title> <dc:creator>Henkelman, Graeme</dc:creator> <dc:creator>Müller, Klaus-Robert</dc:creator> <dc:contributor>Pozun, Zachary D.</dc:contributor> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:contributor>Sheppard, Daniel</dc:contributor> <dc:creator>Rupp, Matthias</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T12:39:16Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hansen, Katja</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52494"/> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Pozun, Zachary D.</dc:creator> <dc:contributor>Müller, Klaus-Robert</dc:contributor> <dc:contributor>Henkelman, Graeme</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hansen, Katja</dc:creator> <dcterms:issued>2012-05-07</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T12:39:16Z</dc:date> <dcterms:abstract xml:lang="eng">We present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>