Publikation:

Machine Learning Estimates of Natural Product Conformational Energies

Lade...
Vorschaubild

Dateien

Rupp_2-1a3hbnzpys11a7.pdf
Rupp_2-1a3hbnzpys11a7.pdfGröße: 809.15 KBDownloads: 115

Datum

2014

Autor:innen

Bauer, Matthias R.
Wilcken, Rainer
Lange, Andreas
Reutlinger, Michael
Boeckler, Frank M.
Schneider, Gisbert

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS Computational Biology. Public Library of Science (PLoS). 2014, 10(1), e1003400. ISSN 1553-734X. eISSN 1553-7358. Available under: doi: 10.1371/journal.pcbi.1003400

Zusammenfassung

Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RUPP, Matthias, Matthias R. BAUER, Rainer WILCKEN, Andreas LANGE, Michael REUTLINGER, Frank M. BOECKLER, Gisbert SCHNEIDER, 2014. Machine Learning Estimates of Natural Product Conformational Energies. In: PLoS Computational Biology. Public Library of Science (PLoS). 2014, 10(1), e1003400. ISSN 1553-734X. eISSN 1553-7358. Available under: doi: 10.1371/journal.pcbi.1003400
BibTex
@article{Rupp2014-01Machi-52772,
  year={2014},
  doi={10.1371/journal.pcbi.1003400},
  title={Machine Learning Estimates of Natural Product Conformational Energies},
  number={1},
  volume={10},
  issn={1553-734X},
  journal={PLoS Computational Biology},
  author={Rupp, Matthias and Bauer, Matthias R. and Wilcken, Rainer and Lange, Andreas and Reutlinger, Michael and Boeckler, Frank M. and Schneider, Gisbert},
  note={Article Number: e1003400}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52772">
    <dcterms:abstract xml:lang="eng">Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.</dcterms:abstract>
    <dc:creator>Reutlinger, Michael</dc:creator>
    <dc:creator>Schneider, Gisbert</dc:creator>
    <dc:creator>Rupp, Matthias</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Wilcken, Rainer</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T09:15:40Z</dcterms:available>
    <dc:contributor>Reutlinger, Michael</dc:contributor>
    <dc:creator>Wilcken, Rainer</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T09:15:40Z</dc:date>
    <dc:creator>Lange, Andreas</dc:creator>
    <dc:creator>Bauer, Matthias R.</dc:creator>
    <dc:contributor>Bauer, Matthias R.</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Lange, Andreas</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52772/3/Rupp_2-1a3hbnzpys11a7.pdf"/>
    <dc:creator>Boeckler, Frank M.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52772/3/Rupp_2-1a3hbnzpys11a7.pdf"/>
    <dcterms:issued>2014-01</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52772"/>
    <dc:contributor>Boeckler, Frank M.</dc:contributor>
    <dcterms:title>Machine Learning Estimates of Natural Product Conformational Energies</dcterms:title>
    <dc:contributor>Schneider, Gisbert</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen