Publikation:

Spectral-Driven Isometry-Invariant Matching of 3D Shapes

Lade...
Vorschaubild

Dateien

Spectral_Ruggeri.pdf
Spectral_Ruggeri.pdfGröße: 11.02 MBDownloads: 702

Datum

2010

Autor:innen

Ruggeri, Mauro Roberto
Patanè, Giuseppe
Spagnuolo, Michela

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Computer Vision. 2010, 89(2/3), pp. 248-265. ISSN 0920-5691. eISSN 1573-1405. Available under: doi: 10.1007/s11263-009-0250-0

Zusammenfassung

This paper presents a matching method for 3D shapes, which comprises a new technique for surface sampling and two algorithms for matching 3D shapes based on point-based statistical shape descriptors. Our sampling technique is based on critical points of the eigenfunctions related to the smaller eigenvalues of the Laplace-Beltrami operator. These critical points are invariant to isometries and are used as anchor points of a sampling technique, which extends the farthest point sampling by using statistical criteria for controlling the density and number of reference points. Once aset of reference points has been computed, for each of them we construct a point-based statistical descriptor (PSSD, for short) of the input surface. This descriptor incorporates an approximation of the geodesic shape distribution and other geometric information describing the surface at that point. Then, the dissimilarity between two surfaces is computed by comparing the corresponding sets of PSSDs with bipartite graph matching or measuring the L1-distance between the reordered feature vectors of a proximity graph. Here, the reordering is given by the Fiedler vector of a Laplacian matrix associated to the proximity graph. Our tests have shown that both approaches are suitable for online retrieval of deformed objects and our sampling strategy improves the retrieval performances of isometry-invariant matching methods. Finally, the approach based on the Fiedler vector is faster than using the bipartite graph matching and it has a similar retrieval effectiveness.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Isometry-invariant matching, 3D model retrieval, Feature points, Local statistical shape descriptors, Laplace-Beltrami operator

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RUGGERI, Mauro Roberto, Giuseppe PATANÈ, Michela SPAGNUOLO, Dietmar SAUPE, 2010. Spectral-Driven Isometry-Invariant Matching of 3D Shapes. In: International Journal of Computer Vision. 2010, 89(2/3), pp. 248-265. ISSN 0920-5691. eISSN 1573-1405. Available under: doi: 10.1007/s11263-009-0250-0
BibTex
@article{Ruggeri2010Spect-6273,
  year={2010},
  doi={10.1007/s11263-009-0250-0},
  title={Spectral-Driven Isometry-Invariant Matching of 3D Shapes},
  number={2/3},
  volume={89},
  issn={0920-5691},
  journal={International Journal of Computer Vision},
  pages={248--265},
  author={Ruggeri, Mauro Roberto and Patanè, Giuseppe and Spagnuolo, Michela and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6273">
    <dc:contributor>Spagnuolo, Michela</dc:contributor>
    <dc:creator>Spagnuolo, Michela</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6273/1/Spectral_Ruggeri.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ruggeri, Mauro Roberto</dc:contributor>
    <dc:contributor>Patanè, Giuseppe</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:40Z</dc:date>
    <dcterms:abstract xml:lang="eng">This paper presents a matching method for 3D shapes, which comprises a new technique for surface sampling and two algorithms for matching 3D shapes based on point-based statistical shape descriptors. Our sampling technique is based on critical points of the eigenfunctions related to the smaller eigenvalues of the Laplace-Beltrami operator. These critical points are invariant to isometries and are used as anchor points of a sampling technique, which extends the farthest point sampling by using statistical criteria for controlling the density and number of reference points. Once aset of reference points has been computed, for each of them we construct a point-based statistical descriptor (PSSD, for short) of the input surface. This descriptor incorporates an approximation of the geodesic shape distribution and other geometric information describing the surface at that point. Then, the dissimilarity between two surfaces is computed by comparing the corresponding sets of PSSDs with bipartite graph matching or measuring the L1-distance between the reordered feature vectors of a proximity graph. Here, the reordering is given by the Fiedler vector of a Laplacian matrix associated to the proximity graph. Our tests have shown that both approaches are suitable for online retrieval of deformed objects and our sampling strategy improves the retrieval performances of isometry-invariant matching methods. Finally, the approach based on the Fiedler vector is faster than using the bipartite graph matching and it has a similar retrieval effectiveness.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6273/1/Spectral_Ruggeri.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-05-31T22:25:04Z</dcterms:available>
    <dcterms:issued>2010</dcterms:issued>
    <dc:creator>Ruggeri, Mauro Roberto</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6273"/>
    <dc:creator>Patanè, Giuseppe</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dcterms:bibliographicCitation>International Journal of Computer Vision ; 89 (2010), 2/3. - S. 248-265</dcterms:bibliographicCitation>
    <dcterms:title>Spectral-Driven Isometry-Invariant Matching of 3D Shapes</dcterms:title>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen