Publikation:

Catabolic and Anabolic Enzyme Activities and Energetics of Acetone Metabolism of the Sulfate-Reducing Bacterium Desulfococcus biacutus

Lade...
Vorschaubild

Dateien

Catabolic_and_Anabolic_Enzyme_1995.pdf
Catabolic_and_Anabolic_Enzyme_1995.pdfGröße: 273.78 KBDownloads: 332

Datum

1995

Autor:innen

Janssen, Peter H.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Bacteriology. 1995, 177(2), pp. 277-282

Zusammenfassung

Acetone degradation by cell suspensions of Desulfococcus biacutus was CO2 dependent, indicating initiation by a carboxylation reaction, while degradation of 3-hydroxybutyrate was not CO2 dependent. Growth on 3-hydroxybutyrate resulted in acetate accumulation in the medium at a ratio of 1 mol of acetate per mol of substrate degraded. In acetone-grown cultures no coenzyme A (CoA) transferase or CoA ligase appeared to be involved in acetone metabolism, and no acetate accumulated in the medium, suggesting that the carboxylation of acetone and activation to acetoacetyl-CoA may occur without the formation of a free intermediate. Catabolism of 3-hydroxybutyrate occurred after activation by CoA transfer from acetyl-CoA, followed by oxidation to acetoacetyl-CoA. In both acetone-grown cells and 3-hydroxybutyrate-grown cells, acetoacetyl-CoA was thiolytically cleaved to two acetyl-CoA residues and further metabolized through the carbon monoxide dehydrogenase pathway. Comparison of the growth yields on acetone and 3-hydroxybutyrate suggested an additional energy requirement in the catabolism of acetone. This is postulated to be the carboxylation reaction (DG&* for the carboxylation of acetone to acetoacetate, 117.1 kJ z mol21). At the intracellular acyl-CoA concentrations measured, the net free energy change of acetone carboxylation and catabolism to two acetyl-CoA residues would be close to 0 kJ z mol of acetone21, if one mol of ATP was invested. In the absence of an energy-utilizing step in this catabolic pathway, the predicted intracellular acetoacetyl-CoA concentration would be 1013 times lower than that measured. Thus, acetone catabolism to two acetyl-CoA residues must be accompanied by the utilization of the energetic equivalent of (at least) one ATP molecule. Measurement of enzyme activities suggested that assimilation of acetyl-CoA occurred through a modified citric acid cycle in which isocitrate was cleaved to succinate and glyoxylate. Malate synthase, condensing glyoxylate and acetyl-CoA, acted as an anaplerotic enzyme. Carboxylation of pyruvate or phosphoenolpyruvate could not be detected.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JANSSEN, Peter H., Bernhard SCHINK, 1995. Catabolic and Anabolic Enzyme Activities and Energetics of Acetone Metabolism of the Sulfate-Reducing Bacterium Desulfococcus biacutus. In: Journal of Bacteriology. 1995, 177(2), pp. 277-282
BibTex
@article{Janssen1995Catab-6869,
  year={1995},
  title={Catabolic and Anabolic Enzyme Activities and Energetics of Acetone Metabolism of the Sulfate-Reducing Bacterium Desulfococcus biacutus},
  number={2},
  volume={177},
  journal={Journal of Bacteriology},
  pages={277--282},
  author={Janssen, Peter H. and Schink, Bernhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6869">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6869/1/Catabolic_and_Anabolic_Enzyme_1995.pdf"/>
    <dc:contributor>Janssen, Peter H.</dc:contributor>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6869/1/Catabolic_and_Anabolic_Enzyme_1995.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:47Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: Journal of Bacteriology 177 (1995), 2, pp. 277-282</dcterms:bibliographicCitation>
    <dc:creator>Schink, Bernhard</dc:creator>
    <dcterms:issued>1995</dcterms:issued>
    <dcterms:title>Catabolic and Anabolic Enzyme Activities and Energetics of Acetone Metabolism of the Sulfate-Reducing Bacterium Desulfococcus biacutus</dcterms:title>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:29:47Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Acetone degradation by cell suspensions of Desulfococcus biacutus was CO2 dependent, indicating initiation by a carboxylation reaction, while degradation of 3-hydroxybutyrate was not CO2 dependent. Growth on 3-hydroxybutyrate resulted in acetate accumulation in the medium at a ratio of 1 mol of acetate per mol of substrate degraded. In acetone-grown cultures no coenzyme A (CoA) transferase or CoA ligase appeared to be involved in acetone metabolism, and no acetate accumulated in the medium, suggesting that the carboxylation of acetone and activation to acetoacetyl-CoA may occur without the formation of a free  intermediate. Catabolism of 3-hydroxybutyrate occurred after activation by CoA transfer from acetyl-CoA, followed by oxidation to acetoacetyl-CoA. In both acetone-grown cells and 3-hydroxybutyrate-grown cells, acetoacetyl-CoA was thiolytically cleaved to two acetyl-CoA residues and further metabolized through the carbon monoxide dehydrogenase pathway. Comparison of the growth yields on acetone and 3-hydroxybutyrate suggested an additional energy requirement in the catabolism of acetone. This is postulated to be the carboxylation reaction (DG&amp;* for the carboxylation of acetone to acetoacetate, 117.1 kJ z mol21). At the intracellular acyl-CoA concentrations measured, the net free energy change of acetone carboxylation and catabolism to two acetyl-CoA residues would be close to 0 kJ z mol of acetone21, if one mol of ATP was invested. In the absence of an energy-utilizing step in this catabolic pathway, the predicted intracellular acetoacetyl-CoA concentration would be 1013 times lower than that measured. Thus, acetone catabolism to two acetyl-CoA residues must be accompanied by the utilization of the energetic equivalent of (at least) one ATP molecule. Measurement of enzyme activities suggested that assimilation of acetyl-CoA  occurred through a modified citric acid cycle in which isocitrate was cleaved to succinate and glyoxylate. Malate synthase, condensing glyoxylate and acetyl-CoA, acted as an anaplerotic enzyme. Carboxylation of pyruvate or phosphoenolpyruvate could not be detected.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6869"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:creator>Janssen, Peter H.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen