Publikation:

Making machine intelligence less scary for criminal analysts : reflections on designing a visual comparative case analysis tool

Lade...
Vorschaubild

Dateien

Jentner_2-19lm9p63vsfma2.pdf
Jentner_2-19lm9p63vsfma2.pdfGröße: 727.5 KBDownloads: 375

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 608142

Projekt

VALCRI - Visual Analytics for Sense-making in CRiminal Intelligence analysis
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Visual Computer. 2018, 34(9), pp. 1225-1241. ISSN 0178-2789. eISSN 1432-2315. Available under: doi: 10.1007/s00371-018-1483-0

Zusammenfassung

A fundamental task in criminal intelligence analysis is to analyze the similarity of crime cases, called comparative case analysis (CCA), to identify common crime patterns and to reason about unsolved crimes. Typically, the data are complex and high dimensional and the use of complex analytical processes would be appropriate. State-of-the-art CCA tools lack flexibility in interactive data exploration and fall short of computational transparency in terms of revealing alternative methods and results. In this paper, we report on the design of the Concept Explorer, a flexible, transparent and interactive CCA system. During this design process, we observed that most criminal analysts are not able to understand the underlying complex technical processes, which decrease the users’ trust in the results and hence a reluctance to use the tool. Our CCA solution implements a computational pipeline together with a visual platform that allows the analysts to interact with each stage of the analysis process and to validate the result. The proposed visual analytics workflow iteratively supports the interpretation of the results of clustering with the respective feature relations, the development of alternative models, as well as cluster verification. The visualizations offer an understandable and usable way for the analyst to provide feedback to the system and to observe the impact of their interactions. Expert feedback confirmed that our user-centered design decisions made this computational complexity less scary to criminal analysts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Crime intelligence analysis, Visual analytics, Clustering, System design, Human–computer interaction, Sequential pattern mining, Text analysis, Dimensionality reduction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JENTNER, Wolfgang, Dominik SACHA, Florian STOFFEL, Geoffrey ELLIS, Leishi ZHANG, Daniel A. KEIM, 2018. Making machine intelligence less scary for criminal analysts : reflections on designing a visual comparative case analysis tool. In: The Visual Computer. 2018, 34(9), pp. 1225-1241. ISSN 0178-2789. eISSN 1432-2315. Available under: doi: 10.1007/s00371-018-1483-0
BibTex
@article{Jentner2018-09Makin-41420,
  year={2018},
  doi={10.1007/s00371-018-1483-0},
  title={Making machine intelligence less scary for criminal analysts : reflections on designing a visual comparative case analysis tool},
  number={9},
  volume={34},
  issn={0178-2789},
  journal={The Visual Computer},
  pages={1225--1241},
  author={Jentner, Wolfgang and Sacha, Dominik and Stoffel, Florian and Ellis, Geoffrey and Zhang, Leishi and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41420">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Ellis, Geoffrey</dc:contributor>
    <dc:contributor>Zhang, Leishi</dc:contributor>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Ellis, Geoffrey</dc:creator>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41420/1/Jentner_2-19lm9p63vsfma2.pdf"/>
    <dcterms:title>Making machine intelligence less scary for criminal analysts : reflections on designing a visual comparative case analysis tool</dcterms:title>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-19T10:26:29Z</dc:date>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Zhang, Leishi</dc:creator>
    <dcterms:issued>2018-09</dcterms:issued>
    <dcterms:abstract xml:lang="eng">A fundamental task in criminal intelligence analysis is to analyze the similarity of crime cases, called comparative case analysis (CCA), to identify common crime patterns and to reason about unsolved crimes. Typically, the data are complex and high dimensional and the use of complex analytical processes would be appropriate. State-of-the-art CCA tools lack flexibility in interactive data exploration and fall short of computational transparency in terms of revealing alternative methods and results. In this paper, we report on the design of the Concept Explorer, a flexible, transparent and interactive CCA system. During this design process, we observed that most criminal analysts are not able to understand the underlying complex technical processes, which decrease the users’ trust in the results and hence a reluctance to use the tool. Our CCA solution implements a computational pipeline together with a visual platform that allows the analysts to interact with each stage of the analysis process and to validate the result. The proposed visual analytics workflow iteratively supports the interpretation of the results of clustering with the respective feature relations, the development of alternative models, as well as cluster verification. The visualizations offer an understandable and usable way for the analyst to provide feedback to the system and to observe the impact of their interactions. Expert feedback confirmed that our user-centered design decisions made this computational complexity less scary to criminal analysts.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41420/1/Jentner_2-19lm9p63vsfma2.pdf"/>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Sacha, Dominik</dc:creator>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41420"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-19T10:26:29Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen