Publikation:

Navigating the unseen peril : safeguarding medical imaging in the age of AI

Lade...
Vorschaubild

Dateien

Maertens_2-19l3uuz2xu95p6.pdf
Maertens_2-19l3uuz2xu95p6.pdfGröße: 389.31 KBDownloads: 10

Datum

2024

Autor:innen

Maertens, Alexandra
Brykman, Steve
Gafita, Andrei
Bai, Harrison
Hoelzer, David
Skoudis, Ed
Paller, Channing Judith

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Artificial Intelligence. Frontiers. 2024, 7, 1400732. eISSN 2624-8212. Verfügbar unter: doi: 10.3389/frai.2024.1400732

Zusammenfassung

In response to the increasing significance of artificial intelligence (AI) in healthcare, there has been increased attention – including a Presidential executive order to create an AI Safety Institute – to the potential threats posed by AI. While much attention has been given to the conventional risks AI poses to cybersecurity, and critical infrastructure, here we provide an overview of some unique challenges of AI for the medical community. Above and beyond obvious concerns about vetting algorithms that impact patient care, there are additional subtle yet equally important things to consider: the potential harm AI poses to its own integrity and the broader medical information ecosystem. Recognizing the role of healthcare professionals as both consumers and contributors to AI training data, this article advocates for a proactive approach in understanding and shaping the data that underpins AI systems, emphasizing the need for informed engagement to maximize the benefits of AI while mitigating the risks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

medical imaging, artificial intelligence, data quality, precision medicine, data bias

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MAERTENS, Alexandra, Steve BRYKMAN, Thomas HARTUNG, Andrei GAFITA, Harrison BAI, David HOELZER, Ed SKOUDIS, Channing Judith PALLER, 2024. Navigating the unseen peril : safeguarding medical imaging in the age of AI. In: Frontiers in Artificial Intelligence. Frontiers. 2024, 7, 1400732. eISSN 2624-8212. Verfügbar unter: doi: 10.3389/frai.2024.1400732
BibTex
@article{Maertens2024-12-09Navig-71850,
  title={Navigating the unseen peril : safeguarding medical imaging in the age of AI},
  year={2024},
  doi={10.3389/frai.2024.1400732},
  volume={7},
  journal={Frontiers in Artificial Intelligence},
  author={Maertens, Alexandra and Brykman, Steve and Hartung, Thomas and Gafita, Andrei and Bai, Harrison and Hoelzer, David and Skoudis, Ed and Paller, Channing Judith},
  note={Article Number: 1400732}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71850">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71850/1/Maertens_2-19l3uuz2xu95p6.pdf"/>
    <dc:contributor>Hoelzer, David</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T09:33:30Z</dcterms:available>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:title>Navigating the unseen peril : safeguarding medical imaging in the age of AI</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hoelzer, David</dc:creator>
    <dcterms:issued>2024-12-09</dcterms:issued>
    <dc:contributor>Gafita, Andrei</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Paller, Channing Judith</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71850/1/Maertens_2-19l3uuz2xu95p6.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Brykman, Steve</dc:contributor>
    <dc:creator>Gafita, Andrei</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71850"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T09:33:30Z</dc:date>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:contributor>Skoudis, Ed</dc:contributor>
    <dc:creator>Skoudis, Ed</dc:creator>
    <dcterms:abstract>In response to the increasing significance of artificial intelligence (AI) in healthcare, there has been increased attention – including a Presidential executive order to create an AI Safety Institute – to the potential threats posed by AI. While much attention has been given to the conventional risks AI poses to cybersecurity, and critical infrastructure, here we provide an overview of some unique challenges of AI for the medical community. Above and beyond obvious concerns about vetting algorithms that impact patient care, there are additional subtle yet equally important things to consider: the potential harm AI poses to its own integrity and the broader medical information ecosystem. Recognizing the role of healthcare professionals as both consumers and contributors to AI training data, this article advocates for a proactive approach in understanding and shaping the data that underpins AI systems, emphasizing the need for informed engagement to maximize the benefits of AI while mitigating the risks.</dcterms:abstract>
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Brykman, Steve</dc:creator>
    <dc:contributor>Bai, Harrison</dc:contributor>
    <dc:creator>Bai, Harrison</dc:creator>
    <dc:creator>Paller, Channing Judith</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen