Publikation: Navigating the unseen peril : safeguarding medical imaging in the age of AI
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In response to the increasing significance of artificial intelligence (AI) in healthcare, there has been increased attention – including a Presidential executive order to create an AI Safety Institute – to the potential threats posed by AI. While much attention has been given to the conventional risks AI poses to cybersecurity, and critical infrastructure, here we provide an overview of some unique challenges of AI for the medical community. Above and beyond obvious concerns about vetting algorithms that impact patient care, there are additional subtle yet equally important things to consider: the potential harm AI poses to its own integrity and the broader medical information ecosystem. Recognizing the role of healthcare professionals as both consumers and contributors to AI training data, this article advocates for a proactive approach in understanding and shaping the data that underpins AI systems, emphasizing the need for informed engagement to maximize the benefits of AI while mitigating the risks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAERTENS, Alexandra, Steve BRYKMAN, Thomas HARTUNG, Andrei GAFITA, Harrison BAI, David HOELZER, Ed SKOUDIS, Channing Judith PALLER, 2024. Navigating the unseen peril : safeguarding medical imaging in the age of AI. In: Frontiers in Artificial Intelligence. Frontiers. 2024, 7, 1400732. eISSN 2624-8212. Verfügbar unter: doi: 10.3389/frai.2024.1400732BibTex
@article{Maertens2024-12-09Navig-71850, title={Navigating the unseen peril : safeguarding medical imaging in the age of AI}, year={2024}, doi={10.3389/frai.2024.1400732}, volume={7}, journal={Frontiers in Artificial Intelligence}, author={Maertens, Alexandra and Brykman, Steve and Hartung, Thomas and Gafita, Andrei and Bai, Harrison and Hoelzer, David and Skoudis, Ed and Paller, Channing Judith}, note={Article Number: 1400732} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71850"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71850/1/Maertens_2-19l3uuz2xu95p6.pdf"/> <dc:contributor>Hoelzer, David</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T09:33:30Z</dcterms:available> <dc:creator>Hartung, Thomas</dc:creator> <dcterms:title>Navigating the unseen peril : safeguarding medical imaging in the age of AI</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Hoelzer, David</dc:creator> <dcterms:issued>2024-12-09</dcterms:issued> <dc:contributor>Gafita, Andrei</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Paller, Channing Judith</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71850/1/Maertens_2-19l3uuz2xu95p6.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Brykman, Steve</dc:contributor> <dc:creator>Gafita, Andrei</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71850"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T09:33:30Z</dc:date> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:contributor>Skoudis, Ed</dc:contributor> <dc:creator>Skoudis, Ed</dc:creator> <dcterms:abstract>In response to the increasing significance of artificial intelligence (AI) in healthcare, there has been increased attention – including a Presidential executive order to create an AI Safety Institute – to the potential threats posed by AI. While much attention has been given to the conventional risks AI poses to cybersecurity, and critical infrastructure, here we provide an overview of some unique challenges of AI for the medical community. Above and beyond obvious concerns about vetting algorithms that impact patient care, there are additional subtle yet equally important things to consider: the potential harm AI poses to its own integrity and the broader medical information ecosystem. Recognizing the role of healthcare professionals as both consumers and contributors to AI training data, this article advocates for a proactive approach in understanding and shaping the data that underpins AI systems, emphasizing the need for informed engagement to maximize the benefits of AI while mitigating the risks.</dcterms:abstract> <dc:creator>Maertens, Alexandra</dc:creator> <dc:contributor>Maertens, Alexandra</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Brykman, Steve</dc:creator> <dc:contributor>Bai, Harrison</dc:contributor> <dc:creator>Bai, Harrison</dc:creator> <dc:creator>Paller, Channing Judith</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>