Publikation: Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we consider Dijkstra's algorithm for the single source single target shortest paths problem in large sparse graphs. The goal is to reduce the response time for online queries by using precomputed information. For the result of the preprocessing, we admit at most linear space. We assume that a layout of the graph is given. From this layout, in the preprocessing, we determine for each edge a geometric object containing all nodes that can be reached on a shortest path starting with that edge. Based on these geometric objects, the search space for online computation can be reduced significantly. We present an extensive experimental study comparing the impact of different types of objects. The test data we use are traffic networks, the typical field of application for this scenario.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WAGNER, Dorothea, Thomas WILLHALM, 2003. Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse GraphsBibTex
@unpublished{Wagner2003Geome-6328, year={2003}, title={Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs}, author={Wagner, Dorothea and Willhalm, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6328"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Wagner, Dorothea</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:29Z</dc:date> <dc:format>application/pdf</dc:format> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6328/1/preprint_183.pdf"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Willhalm, Thomas</dc:contributor> <dc:creator>Willhalm, Thomas</dc:creator> <dc:creator>Wagner, Dorothea</dc:creator> <dcterms:title>Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:29Z</dcterms:available> <dcterms:abstract xml:lang="eng">In this paper, we consider Dijkstra's algorithm for the single source single target shortest paths problem in large sparse graphs. The goal is to reduce the response time for online queries by using precomputed information. For the result of the preprocessing, we admit at most linear space. We assume that a layout of the graph is given. From this layout, in the preprocessing, we determine for each edge a geometric object containing all nodes that can be reached on a shortest path starting with that edge. Based on these geometric objects, the search space for online computation can be reduced significantly. We present an extensive experimental study comparing the impact of different types of objects. The test data we use are traffic networks, the typical field of application for this scenario.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6328/1/preprint_183.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6328"/> <dcterms:issued>2003</dcterms:issued> </rdf:Description> </rdf:RDF>