Semilinear stars are contractible

No Thumbnail Available
Files
There are no files associated with this item.
Date
2018
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Fundamenta Mathematicae ; 241 (2018), 3. - pp. 291-312. - ISSN 0016-2736. - eISSN 1730-6329
Abstract
Let R be an ordered vector space over an ordered division ring. We prove that every definable set X is a finite union of relatively open definable subsets which are definably simply-connected, settling a conjecture of Edmundo et al. (2013). The proof goes through the stronger statement that the star of a cell in a special linear decomposition of X is definably simply-connected. In fact, if the star is bounded, then it is definably contractible.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690ELEFTHERIOU, Pantelis E., 2018. Semilinear stars are contractible. In: Fundamenta Mathematicae. 241(3), pp. 291-312. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm394-10-2017
BibTex
@article{Eleftheriou2018Semil-42664,
  year={2018},
  doi={10.4064/fm394-10-2017},
  title={Semilinear stars are contractible},
  number={3},
  volume={241},
  issn={0016-2736},
  journal={Fundamenta Mathematicae},
  pages={291--312},
  author={Eleftheriou, Pantelis E.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42664">
    <dcterms:title>Semilinear stars are contractible</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42664"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:56:33Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Let R be an ordered vector space over an ordered division ring. We prove that every definable set X is a finite union of relatively open definable subsets which are definably simply-connected, settling a conjecture of Edmundo et al. (2013). The proof goes through the stronger statement that the star of a cell in a special linear decomposition of X is definably simply-connected. In fact, if the star is bounded, then it is definably contractible.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:56:33Z</dc:date>
    <dc:contributor>Eleftheriou, Pantelis E.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:creator>Eleftheriou, Pantelis E.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown