Publikation: Semilinear stars are contractible
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Fundamenta Mathematicae. 2018, 241(3), pp. 291-312. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm394-10-2017
Zusammenfassung
Let R be an ordered vector space over an ordered division ring. We prove that every definable set X is a finite union of relatively open definable subsets which are definably simply-connected, settling a conjecture of Edmundo et al. (2013). The proof goes through the stronger statement that the star of a cell in a special linear decomposition of X is definably simply-connected. In fact, if the star is bounded, then it is definably contractible.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ELEFTHERIOU, Pantelis E., 2018. Semilinear stars are contractible. In: Fundamenta Mathematicae. 2018, 241(3), pp. 291-312. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm394-10-2017BibTex
@article{Eleftheriou2018Semil-42664, year={2018}, doi={10.4064/fm394-10-2017}, title={Semilinear stars are contractible}, number={3}, volume={241}, issn={0016-2736}, journal={Fundamenta Mathematicae}, pages={291--312}, author={Eleftheriou, Pantelis E.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42664"> <dcterms:title>Semilinear stars are contractible</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42664"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:56:33Z</dcterms:available> <dcterms:abstract xml:lang="eng">Let R be an ordered vector space over an ordered division ring. We prove that every definable set X is a finite union of relatively open definable subsets which are definably simply-connected, settling a conjecture of Edmundo et al. (2013). The proof goes through the stronger statement that the star of a cell in a special linear decomposition of X is definably simply-connected. In fact, if the star is bounded, then it is definably contractible.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T11:56:33Z</dc:date> <dc:contributor>Eleftheriou, Pantelis E.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018</dcterms:issued> <dc:creator>Eleftheriou, Pantelis E.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt