Publikation: Improving scalability of ART neural networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
With the increasing amount of available data, the need for classification of large data volumes is permanently growing. In order to cope with this challenge, neural classifiers should be adapted to large-scale data. We present here a well scalable extension to the fuzzy Adaptive Resonance Associative Map (ARAM) neural network, which was specially developed for the quick classification of high-dimensional and large data. This extension aims at increasing the classification speed by adding an extra layer for clustering learned prototypes into large clusters. This enables the activation of only one or a few clusters i.e. a small fraction of all prototypes, reducing the classification time significantly. Further we introduce two methods to adapt this extension to a multi-label classification task.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BENITES, Fernando, Elena SAPOZHNIKOVA, 2017. Improving scalability of ART neural networks. In: Neurocomputing. 2017, 230, pp. 219-229. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2016.12.022BibTex
@article{Benites2017-03Impro-38294, year={2017}, doi={10.1016/j.neucom.2016.12.022}, title={Improving scalability of ART neural networks}, volume={230}, issn={0925-2312}, journal={Neurocomputing}, pages={219--229}, author={Benites, Fernando and Sapozhnikova, Elena} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38294"> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38294"/> <dc:creator>Benites, Fernando</dc:creator> <dc:creator>Sapozhnikova, Elena</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">With the increasing amount of available data, the need for classification of large data volumes is permanently growing. In order to cope with this challenge, neural classifiers should be adapted to large-scale data. We present here a well scalable extension to the fuzzy Adaptive Resonance Associative Map (ARAM) neural network, which was specially developed for the quick classification of high-dimensional and large data. This extension aims at increasing the classification speed by adding an extra layer for clustering learned prototypes into large clusters. This enables the activation of only one or a few clusters i.e. a small fraction of all prototypes, reducing the classification time significantly. Further we introduce two methods to adapt this extension to a multi-label classification task.</dcterms:abstract> <dcterms:title>Improving scalability of ART neural networks</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Benites, Fernando</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-04T09:13:26Z</dc:date> <dcterms:issued>2017-03</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-04T09:13:26Z</dcterms:available> </rdf:Description> </rdf:RDF>