Publikation:

Improving scalability of ART neural networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Neurocomputing. 2017, 230, pp. 219-229. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2016.12.022

Zusammenfassung

With the increasing amount of available data, the need for classification of large data volumes is permanently growing. In order to cope with this challenge, neural classifiers should be adapted to large-scale data. We present here a well scalable extension to the fuzzy Adaptive Resonance Associative Map (ARAM) neural network, which was specially developed for the quick classification of high-dimensional and large data. This extension aims at increasing the classification speed by adding an extra layer for clustering learned prototypes into large clusters. This enables the activation of only one or a few clusters i.e. a small fraction of all prototypes, reducing the classification time significantly. Further we introduce two methods to adapt this extension to a multi-label classification task.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2017. Improving scalability of ART neural networks. In: Neurocomputing. 2017, 230, pp. 219-229. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2016.12.022
BibTex
@article{Benites2017-03Impro-38294,
  year={2017},
  doi={10.1016/j.neucom.2016.12.022},
  title={Improving scalability of ART neural networks},
  volume={230},
  issn={0925-2312},
  journal={Neurocomputing},
  pages={219--229},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38294">
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38294"/>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">With the increasing amount of available data, the need for classification of large data volumes is permanently growing. In order to cope with this challenge, neural classifiers should be adapted to large-scale data. We present here a well scalable extension to the fuzzy Adaptive Resonance Associative Map (ARAM) neural network, which was specially developed for the quick classification of high-dimensional and large data. This extension aims at increasing the classification speed by adding an extra layer for clustering learned prototypes into large clusters. This enables the activation of only one or a few clusters i.e. a small fraction of all prototypes, reducing the classification time significantly. Further we introduce two methods to adapt this extension to a multi-label classification task.</dcterms:abstract>
    <dcterms:title>Improving scalability of ART neural networks</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-04T09:13:26Z</dc:date>
    <dcterms:issued>2017-03</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-04T09:13:26Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen