Publikation: Direct patterning of metal chalcogenide semiconductor materials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Lithography is one of the most widely used methods for cutting‐edge research and industrial applications, mainly owing to its ability to draw patterns in the micro and even nanoscale. However, the fabrication of semiconductor micro/nanostructures via conventional electron or optical lithography technologies often requires a time‐consuming multistep process and the use of expensive facilities. Herein, a low‐cost, high‐resolution, facile, and versatile direct patterning method based on metal–organic molecular precursors is reported. The ink‐based metal–organic precursors are found to operate as negative resists, with the material exposed by different methods (electron‐beam/laser/heat/ultraviolet (UV)) to render them insoluble in the development process. This technical process can deliver metal chalcogenide semiconductors with arbitrary 2D/3D patterns with sub‐50 nm resolution. Electron beam lithography, two‐photon absorption lithography, thermal scanning probe lithography, and UV photolithography are demonstrated for the direct patterning process. Different metal chalcogenide semiconductor nanodevices, such as photoconductive selenium‐doped Sb2S3 nanoribbons, p‐type PbS single‐nanowire field‐effect transistors, and p‐n junction CdS/Cu2S nanowire solar cells, are fabricated by this method. This direct patterning technique is a versatile and simple micro/nanolithography technology with considerable potential for “lab‐on‐a‐chip” preparation of semiconductor devices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Wei, Patrick PFEIFFER, Lukas SCHMIDT-MENDE, 2020. Direct patterning of metal chalcogenide semiconductor materials. In: Advanced Functional Materials. Wiley. 2020, 30(27), 2002685. ISSN 1616-301X. eISSN 1616-3028. Available under: doi: 10.1002/adfm.202002685BibTex
@article{Wang2020-07Direc-49182, year={2020}, doi={10.1002/adfm.202002685}, title={Direct patterning of metal chalcogenide semiconductor materials}, number={27}, volume={30}, issn={1616-301X}, journal={Advanced Functional Materials}, author={Wang, Wei and Pfeiffer, Patrick and Schmidt-Mende, Lukas}, note={Article Number: 2002685} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49182"> <dc:contributor>Schmidt-Mende, Lukas</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Pfeiffer, Patrick</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49182/1/Wang_2-193brvpn7yvpt7.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-31T11:16:31Z</dc:date> <dcterms:abstract>Lithography is one of the most widely used methods for cutting‐edge research and industrial applications, mainly owing to its ability to draw patterns in the micro and even nanoscale. However, the fabrication of semiconductor micro/nanostructures via conventional electron or optical lithography technologies often requires a time‐consuming multistep process and the use of expensive facilities. Herein, a low‐cost, high‐resolution, facile, and versatile direct patterning method based on metal–organic molecular precursors is reported. The ink‐based metal–organic precursors are found to operate as negative resists, with the material exposed by different methods (electron‐beam/laser/heat/ultraviolet (UV)) to render them insoluble in the development process. This technical process can deliver metal chalcogenide semiconductors with arbitrary 2D/3D patterns with sub‐50 nm resolution. Electron beam lithography, two‐photon absorption lithography, thermal scanning probe lithography, and UV photolithography are demonstrated for the direct patterning process. Different metal chalcogenide semiconductor nanodevices, such as photoconductive selenium‐doped Sb2S3 nanoribbons, p‐type PbS single‐nanowire field‐effect transistors, and p‐n junction CdS/Cu2S nanowire solar cells, are fabricated by this method. This direct patterning technique is a versatile and simple micro/nanolithography technology with considerable potential for “lab‐on‐a‐chip” preparation of semiconductor devices.</dcterms:abstract> <dcterms:issued>2020-07</dcterms:issued> <dc:creator>Schmidt-Mende, Lukas</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Direct patterning of metal chalcogenide semiconductor materials</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49182"/> <dc:contributor>Wang, Wei</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Pfeiffer, Patrick</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wang, Wei</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-31T11:16:31Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49182/1/Wang_2-193brvpn7yvpt7.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>