Integer-valued definable functions

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Jones, Gareth O.
Wilkie, Alex J.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bulletin of the London Mathematical Society. 2012, 44(6), pp. 1285-1291. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds059
Zusammenfassung

We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)k → |R is such that f(|N^k) ⊆ |Z, then either sup|¯x| <= r |f(¯x)| grows faster
than exp(rδ), for some δ > 0, or f is a polynomial over Q.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Reell-analytische Funktionen, O-Minimalität
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690JONES, Gareth O., Margaret E. M. THOMAS, Alex J. WILKIE, 2012. Integer-valued definable functions. In: Bulletin of the London Mathematical Society. 2012, 44(6), pp. 1285-1291. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds059
BibTex
@article{Jones2012Integ-20448,
  year={2012},
  doi={10.1112/blms/bds059},
  title={Integer-valued definable functions},
  number={6},
  volume={44},
  issn={0024-6093},
  journal={Bulletin of the London Mathematical Society},
  pages={1285--1291},
  author={Jones, Gareth O. and Thomas, Margaret E. M. and Wilkie, Alex J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20448">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Thomas, Margaret E. M.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/>
    <dc:contributor>Jones, Gareth O.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20448"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:bibliographicCitation>The Bulletin of the London Mathematical Society ; 44 (2012), 6. - S. 1285-1291</dcterms:bibliographicCitation>
    <dc:contributor>Wilkie, Alex J.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Jones, Gareth O.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:title>Integer-valued definable functions</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-31T23:25:05Z</dcterms:available>
    <dc:creator>Wilkie, Alex J.</dc:creator>
    <dcterms:abstract xml:lang="eng">We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)&lt;sup&gt;k&lt;/sup&gt; → |R is such that f(|N^k) ⊆ |Z, then either sup&lt;sub&gt;|¯x| &lt;= r&lt;/sub&gt; |f(¯x)| grows faster&lt;br /&gt;than exp(r&lt;sup&gt;δ&lt;/sup&gt;), for some δ &gt; 0, or f is a polynomial over Q.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-11-20T09:04:11Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Thomas, Margaret E. M.</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen