Integer-valued definable functions

Lade...
Vorschaubild
Datum
2012
Autor:innen
Jones, Gareth O.
Wilkie, Alex J.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Erschienen in
Bulletin of the London Mathematical Society ; 44 (2012), 6. - S. 1285-1291. - ISSN 0024-6093. - eISSN 1469-2120
Zusammenfassung
We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)k → |R is such that f(|N^k) ⊆ |Z, then either sup|¯x| <= r |f(¯x)| grows faster
than exp(rδ), for some δ > 0, or f is a polynomial over Q.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Reell-analytische Funktionen,O-Minimalität
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690JONES, Gareth O., Margaret E. M. THOMAS, Alex J. WILKIE, 2012. Integer-valued definable functions. In: Bulletin of the London Mathematical Society. 44(6), pp. 1285-1291. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds059
BibTex
@article{Jones2012Integ-20448,
  year={2012},
  doi={10.1112/blms/bds059},
  title={Integer-valued definable functions},
  number={6},
  volume={44},
  issn={0024-6093},
  journal={Bulletin of the London Mathematical Society},
  pages={1285--1291},
  author={Jones, Gareth O. and Thomas, Margaret E. M. and Wilkie, Alex J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20448">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Thomas, Margaret E. M.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/>
    <dc:contributor>Jones, Gareth O.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20448"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:bibliographicCitation>The Bulletin of the London Mathematical Society ; 44 (2012), 6. - S. 1285-1291</dcterms:bibliographicCitation>
    <dc:contributor>Wilkie, Alex J.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Jones, Gareth O.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:title>Integer-valued definable functions</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-31T23:25:05Z</dcterms:available>
    <dc:creator>Wilkie, Alex J.</dc:creator>
    <dcterms:abstract xml:lang="eng">We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)&lt;sup&gt;k&lt;/sup&gt; → |R is such that f(|N^k) ⊆ |Z, then either sup&lt;sub&gt;|¯x| &lt;= r&lt;/sub&gt; |f(¯x)| grows faster&lt;br /&gt;than exp(r&lt;sup&gt;δ&lt;/sup&gt;), for some δ &gt; 0, or f is a polynomial over Q.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-11-20T09:04:11Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Thomas, Margaret E. M.</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet