Publikation: Integer-valued definable functions
Lade...
Dateien
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bulletin of the London Mathematical Society. 2012, 44(6), pp. 1285-1291. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds059
Zusammenfassung
We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)k → |R is such that f(|N^k) ⊆ |Z, then either sup|¯x| <= r |f(¯x)| grows faster
than exp(rδ), for some δ > 0, or f is a polynomial over Q.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Reell-analytische Funktionen, O-Minimalität
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
JONES, Gareth O., Margaret E. M. THOMAS, Alex J. WILKIE, 2012. Integer-valued definable functions. In: Bulletin of the London Mathematical Society. 2012, 44(6), pp. 1285-1291. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds059BibTex
@article{Jones2012Integ-20448, year={2012}, doi={10.1112/blms/bds059}, title={Integer-valued definable functions}, number={6}, volume={44}, issn={0024-6093}, journal={Bulletin of the London Mathematical Society}, pages={1285--1291}, author={Jones, Gareth O. and Thomas, Margaret E. M. and Wilkie, Alex J.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20448"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Thomas, Margaret E. M.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/> <dc:contributor>Jones, Gareth O.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20448"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:bibliographicCitation>The Bulletin of the London Mathematical Society ; 44 (2012), 6. - S. 1285-1291</dcterms:bibliographicCitation> <dc:contributor>Wilkie, Alex J.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Jones, Gareth O.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2012</dcterms:issued> <dcterms:title>Integer-valued definable functions</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-31T23:25:05Z</dcterms:available> <dc:creator>Wilkie, Alex J.</dc:creator> <dcterms:abstract xml:lang="eng">We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)<sup>k</sup> → |R is such that f(|N^k) ⊆ |Z, then either sup<sub>|¯x| <= r</sub> |f(¯x)| grows faster<br />than exp(r<sup>δ</sup>), for some δ > 0, or f is a polynomial over Q.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-11-20T09:04:11Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Thomas, Margaret E. M.</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja