Publikation:

Poster : Visual Prediction of Time Series

Lade...
Vorschaubild

Dateien

Hao_Visual prediction.pdf
Hao_Visual prediction.pdfGröße: 664.9 KBDownloads: 698

Datum

2009

Autor:innen

Hao, Ming
Sharma, Ratnesh
Dayal, Umeshwar
Castellanos, Malu

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009, pp. 229-230. ISBN 978-1-4244-5283-5. Available under: doi: 10.1109/VAST.2009.5333420

Zusammenfassung

Many well-known time series prediction methods have been used daily by analysts making decisions. To reach a good prediction, we introduce several new visual analysis techniques of smoothing, multi-scaling, and weighted average with the involvement of human expert knowledge. We combine them into a well-fitted method to perform prediction. We have applied this approach to predict resource consumption in data center for next day planning.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2009 IEEE Symposium on Visual Analytics Science and Technology, 12. Okt. 2009 - 13. Okt. 2009, Atlantic City, NJ, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAO, Ming, Halldor JANETZKO, Ratnesh SHARMA, Umeshwar DAYAL, Daniel A. KEIM, Malu CASTELLANOS, 2009. Poster : Visual Prediction of Time Series. 2009 IEEE Symposium on Visual Analytics Science and Technology. Atlantic City, NJ, USA, 12. Okt. 2009 - 13. Okt. 2009. In: 2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009, pp. 229-230. ISBN 978-1-4244-5283-5. Available under: doi: 10.1109/VAST.2009.5333420
BibTex
@inproceedings{Hao2009-10Poste-19202,
  year={2009},
  doi={10.1109/VAST.2009.5333420},
  title={Poster : Visual Prediction of Time Series},
  isbn={978-1-4244-5283-5},
  publisher={IEEE},
  booktitle={2009 IEEE Symposium on Visual Analytics Science and Technology},
  pages={229--230},
  author={Hao, Ming and Janetzko, Halldor and Sharma, Ratnesh and Dayal, Umeshwar and Keim, Daniel A. and Castellanos, Malu}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19202">
    <dc:contributor>Sharma, Ratnesh</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-03T09:38:21Z</dc:date>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Castellanos, Malu</dc:creator>
    <dc:contributor>Castellanos, Malu</dc:contributor>
    <dc:creator>Hao, Ming</dc:creator>
    <dc:creator>Sharma, Ratnesh</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-03T09:38:21Z</dcterms:available>
    <dcterms:issued>2009-10</dcterms:issued>
    <dcterms:abstract xml:lang="deu">Many well-known time series prediction methods have been used daily by analysts making decisions. To reach a good prediction, we introduce several new visual analysis techniques of smoothing, multi-scaling, and weighted average with the involvement of human expert knowledge. We combine them into a well-fitted method to perform prediction. We have applied this approach to predict resource consumption in data center for next day planning.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hao, Ming</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: IEEE Symposium on Visual Analytics Science and Technology : VAST 2009 ; 12-13 Oct 2009, Atlantic City, NJ / Institute of Electrical and Electronics Engineers. - Piscataway, NJ : IEEE Service Center, 2009. - pp. 229-231. - ISBN 978-1-4244-5283-5</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19202/2/Hao_Visual%20prediction.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19202"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:title>Poster : Visual Prediction of Time Series</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19202/2/Hao_Visual%20prediction.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen