Publikation: Motion Field Estimation from Alternate Exposure Images
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Traditional optical flow algorithms rely on consecutive short-exposed images. In this work, we make use of an additional long-exposed image for motion field estimation. Long-exposed images integrate motion information directly in the form of motion-blur. With this additional information, more robust and accurate motion fields can be estimated. In addition, the moment of occlusion can be determined. Considering the basic signal-theoretical problem in motion field estimation, we exploit the fact that long-exposed images integrate motion information to prevent temporal aliasing. A suitable image formation model relates the long-exposed image to preceding and succeeding short-exposed images in terms of dense 2D motion and per-pixel occlusion/disocclusion timings. Based on our image formation model, we describe a practical variational algorithm to estimate the motion field not only for visible image regions but also for regions getting occluded. Results for synthetic as well as real-world scenes demonstrate the validity of the approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SELLENT, Anita, Martin EISEMANN, Bastian GOLDLÜCKE, Daniel CREMERS, 2011. Motion Field Estimation from Alternate Exposure Images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011, 33(8), pp. 1577-1589. ISSN 0162-8828. eISSN 1939-3539. Available under: doi: 10.1109/TPAMI.2010.218BibTex
@article{Sellent2011Motio-29097, year={2011}, doi={10.1109/TPAMI.2010.218}, title={Motion Field Estimation from Alternate Exposure Images}, number={8}, volume={33}, issn={0162-8828}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, pages={1577--1589}, author={Sellent, Anita and Eisemann, Martin and Goldlücke, Bastian and Cremers, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29097"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2011</dcterms:issued> <dc:creator>Cremers, Daniel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:59:35Z</dcterms:available> <dc:creator>Sellent, Anita</dc:creator> <dc:creator>Eisemann, Martin</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Traditional optical flow algorithms rely on consecutive short-exposed images. In this work, we make use of an additional long-exposed image for motion field estimation. Long-exposed images integrate motion information directly in the form of motion-blur. With this additional information, more robust and accurate motion fields can be estimated. In addition, the moment of occlusion can be determined. Considering the basic signal-theoretical problem in motion field estimation, we exploit the fact that long-exposed images integrate motion information to prevent temporal aliasing. A suitable image formation model relates the long-exposed image to preceding and succeeding short-exposed images in terms of dense 2D motion and per-pixel occlusion/disocclusion timings. Based on our image formation model, we describe a practical variational algorithm to estimate the motion field not only for visible image regions but also for regions getting occluded. Results for synthetic as well as real-world scenes demonstrate the validity of the approach.</dcterms:abstract> <dc:creator>Goldlücke, Bastian</dc:creator> <dcterms:title>Motion Field Estimation from Alternate Exposure Images</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29097"/> <dc:contributor>Sellent, Anita</dc:contributor> <dc:contributor>Eisemann, Martin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Cremers, Daniel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:59:35Z</dc:date> <dc:contributor>Goldlücke, Bastian</dc:contributor> </rdf:Description> </rdf:RDF>