Publikation:

Contributions to Understanding - Pre-Election Poll Accuracy: A Cross-Election Perspective

Lade...
Vorschaubild

Dateien

Chen_2-189d8c4b81d070.pdf
Chen_2-189d8c4b81d070.pdfGröße: 26.46 MBDownloads: 96

Datum

2024

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 426500462

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Pre-election polls play a crucial role in informing researchers, pollsters, candidates, and the public, serving as a significant empirical application of statistical principles. However, it has become increasingly apparent over recent decades that these polls do not consistently align with actual election results. Understanding the factors contributing to the success or failure of polls poses a considerable challenge. This dissertation seeks to enhance our comprehension of pre-election poll accuracy through a cross-election perspective. Using diverse data sources, recent political science advancements, and hierarchical Bayesian modeling techniques, I systematically explore numerous potential correlates of poll accuracy at the respondent-, poll-, and election-level. In collaboration with my colleagues, I employ and refine hierarchical Bayesian modeling techniques and elaborate theories on correlates of polling errors within the Total Survey Error (TSE) framework.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHEN, Sina, 2024. Contributions to Understanding - Pre-Election Poll Accuracy: A Cross-Election Perspective [Dissertation]. Konstanz: Universität Konstanz
BibTex
@phdthesis{Chen2024-02-23Contr-70412,
  year={2024},
  title={Contributions to Understanding - Pre-Election Poll Accuracy: A Cross-Election Perspective},
  author={Chen, Sina},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70412">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-16T08:17:38Z</dc:date>
    <dcterms:abstract>Pre-election polls play a crucial role in informing researchers, pollsters, candidates, and the public, serving as a significant empirical application of statistical principles. However, it has become increasingly apparent over recent decades that these polls do not consistently align with actual election results. Understanding the factors contributing to the success or failure of polls poses a considerable challenge. This dissertation seeks to enhance our comprehension of pre-election poll accuracy through a  cross-election perspective. Using diverse data sources, recent political science advancements, and hierarchical Bayesian modeling techniques, I systematically explore numerous potential correlates of poll accuracy at the respondent-, poll-, and election-level. In collaboration with my colleagues, I employ and refine hierarchical Bayesian modeling techniques and elaborate theories on correlates of polling errors within the Total Survey Error (TSE) framework.</dcterms:abstract>
    <dcterms:title>Contributions to Understanding - Pre-Election Poll Accuracy: A Cross-Election Perspective</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70412/4/Chen_2-189d8c4b81d070.pdf"/>
    <dc:creator>Chen, Sina</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70412/4/Chen_2-189d8c4b81d070.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70412"/>
    <dc:contributor>Chen, Sina</dc:contributor>
    <dcterms:issued>2024-02-23</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-16T08:17:38Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

February 23, 2024
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2024
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen