Publikation: Designing ecosystems of intelligence from first principles
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants—what we call “shared intelligence.” This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one’s sensed world—also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales, that is, inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent’s generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing—leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first—and key—step towards such an ecology.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FRISTON, Karl J., Maxwell JD RAMSTEAD, Alex B. KIEFER, Alexander TSCHANTZ, Christopher L. BUCKLEY, Mahault ALBARRACIN, Riddhi J. PITLIYA, Conor HEINS, Brennan KLEIN, Dalton AR SAKTHIVADIVEL, 2024. Designing ecosystems of intelligence from first principles. In: Collective Intelligence. Sage. 2024, 3(1), pp. 1-19. eISSN 2633-9137. Available under: doi: 10.1177/26339137231222481BibTex
@article{Friston2024Desig-69915, year={2024}, doi={10.1177/26339137231222481}, title={Designing ecosystems of intelligence from first principles}, number={1}, volume={3}, journal={Collective Intelligence}, pages={1--19}, author={Friston, Karl J. and Ramstead, Maxwell JD and Kiefer, Alex B. and Tschantz, Alexander and Buckley, Christopher L. and Albarracin, Mahault and Pitliya, Riddhi J. and Heins, Conor and Klein, Brennan and Sakthivadivel, Dalton AR} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69915"> <dc:contributor>Albarracin, Mahault</dc:contributor> <dc:contributor>Kiefer, Alex B.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69915/1/Friston_2-17z8pcyni05uz7.pdf"/> <dc:creator>Heins, Conor</dc:creator> <dc:creator>Ramstead, Maxwell JD</dc:creator> <dc:creator>Buckley, Christopher L.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-03T08:33:29Z</dc:date> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Buckley, Christopher L.</dc:contributor> <dcterms:issued>2024</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-03T08:33:29Z</dcterms:available> <dc:contributor>Sakthivadivel, Dalton AR</dc:contributor> <dc:contributor>Friston, Karl J.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69915"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Ramstead, Maxwell JD</dc:contributor> <dc:creator>Tschantz, Alexander</dc:creator> <dc:creator>Klein, Brennan</dc:creator> <dc:creator>Sakthivadivel, Dalton AR</dc:creator> <dc:creator>Pitliya, Riddhi J.</dc:creator> <dc:contributor>Tschantz, Alexander</dc:contributor> <dcterms:abstract>This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants—what we call “shared intelligence.” This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one’s sensed world—also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales, that is, inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent’s generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing—leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first—and key—step towards such an ecology.</dcterms:abstract> <dc:contributor>Pitliya, Riddhi J.</dc:contributor> <dc:creator>Albarracin, Mahault</dc:creator> <dc:contributor>Klein, Brennan</dc:contributor> <dc:creator>Kiefer, Alex B.</dc:creator> <dc:creator>Friston, Karl J.</dc:creator> <dcterms:title>Designing ecosystems of intelligence from first principles</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Heins, Conor</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69915/1/Friston_2-17z8pcyni05uz7.pdf"/> </rdf:Description> </rdf:RDF>