Publikation:

Data-driven approximate dynamic programming : A linear programming approach

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Kamoutsi, Angeliki
Esfahani, Peyman Mohajerin
Lygeros, John

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2017 IEEE 56th Annual Conference on Decision and Control (CDC). Piscataway, NJ: IEEE, 2017, pp. 5174-5179. ISBN 978-1-5090-2873-3. Available under: doi: 10.1109/CDC.2017.8264426

Zusammenfassung

This article presents an approximation scheme for the infinite-dimensional linear programming formulation of discrete-time Markov control processes via a finite-dimensional convex program, when the dynamics are unknown and learned from data. We derive a probabilistic explicit error bound between the data-driven finite convex program and the original infinite linear program. We further discuss the sample complexity of the error bound which translates to the number of samples required for an a priori approximation accuracy. Our analysis sheds light on the impact of the choice of basis functions for approximating the true value function. Finally, the relevance of the method is illustrated on a truncated LQG problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE 56th Annual Conference on Decision and Control (CDC), 12. Dez. 2017 - 15. Dez. 2017, Melbourne, Australia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SUTTER, Tobias, Angeliki KAMOUTSI, Peyman Mohajerin ESFAHANI, John LYGEROS, 2017. Data-driven approximate dynamic programming : A linear programming approach. IEEE 56th Annual Conference on Decision and Control (CDC). Melbourne, Australia, 12. Dez. 2017 - 15. Dez. 2017. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). Piscataway, NJ: IEEE, 2017, pp. 5174-5179. ISBN 978-1-5090-2873-3. Available under: doi: 10.1109/CDC.2017.8264426
BibTex
@inproceedings{Sutter2017Datad-55738,
  year={2017},
  doi={10.1109/CDC.2017.8264426},
  title={Data-driven approximate dynamic programming : A linear programming approach},
  isbn={978-1-5090-2873-3},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2017 IEEE 56th Annual Conference on Decision and Control (CDC)},
  pages={5174--5179},
  author={Sutter, Tobias and Kamoutsi, Angeliki and Esfahani, Peyman Mohajerin and Lygeros, John}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55738">
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:46:29Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Lygeros, John</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55738"/>
    <dc:creator>Kamoutsi, Angeliki</dc:creator>
    <dc:creator>Esfahani, Peyman Mohajerin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:46:29Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:issued>2017</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">This article presents an approximation scheme for the infinite-dimensional linear programming formulation of discrete-time Markov control processes via a finite-dimensional convex program, when the dynamics are unknown and learned from data. We derive a probabilistic explicit error bound between the data-driven finite convex program and the original infinite linear program. We further discuss the sample complexity of the error bound which translates to the number of samples required for an a priori approximation accuracy. Our analysis sheds light on the impact of the choice of basis functions for approximating the true value function. Finally, the relevance of the method is illustrated on a truncated LQG problem.</dcterms:abstract>
    <dc:contributor>Lygeros, John</dc:contributor>
    <dc:contributor>Kamoutsi, Angeliki</dc:contributor>
    <dcterms:title>Data-driven approximate dynamic programming : A linear programming approach</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen