Publikation: Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Nanometer-scale resistive switching devices operated in the metallic conductance regime offer ultimately scalable and widely reconfigurable hardware elements for novel in-memory and neuromorphic computing architectures. Moreover, they exhibit high operation speed at low power arising from the ease of the electric-field-driven redistribution of only a small amount of highly mobile ionic species upon resistive switching. We investigate the memristive behavior of a so-far less explored representative of this class, the Ag/AgI material system in a point contact arrangement established by the conducting PtIr tip of a scanning probe microscope. We demonstrate stable resistive switching duty cycles and investigate the dynamical aspects of non-volatile operation in detail. The high-speed switching capabilities are explored by a custom-designed microwave setup that enables time-resolved studies of subsequent set and reset transitions upon biasing the Ag/AgI/PtIr nanojunctions with sub-nanosecond voltage pulses. Our results demonstrate the potential of Ag-based filamentary memristive nanodevices to serve as the hardware elements in high-speed neuromorphic circuits.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SÁNTA, Botond, Dániel MOLNÁR, Patrick HAIBER, Agnes GUBICZA, Edit SZILÁGYI, Zsolt ZOLNAI, András HALBRITTER, Miklós CSONTOS, 2020. Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions. In: Beilstein Journal of Nanotechnology. Beilstein-Institut. 2020, 11, pp. 92-100. eISSN 2190-4286. Available under: doi: 10.3762/bjnano.11.9BibTex
@article{Santa2020Nanos-51071, year={2020}, doi={10.3762/bjnano.11.9}, title={Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions}, volume={11}, journal={Beilstein Journal of Nanotechnology}, pages={92--100}, author={Sánta, Botond and Molnár, Dániel and Haiber, Patrick and Gubicza, Agnes and Szilágyi, Edit and Zolnai, Zsolt and Halbritter, András and Csontos, Miklós} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51071"> <dc:contributor>Haiber, Patrick</dc:contributor> <dc:contributor>Zolnai, Zsolt</dc:contributor> <dc:creator>Sánta, Botond</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51071/1/Santa_2-17ygstbip8jdj1.pdf"/> <dc:contributor>Gubicza, Agnes</dc:contributor> <dc:contributor>Sánta, Botond</dc:contributor> <dc:contributor>Szilágyi, Edit</dc:contributor> <dc:creator>Zolnai, Zsolt</dc:creator> <dc:creator>Haiber, Patrick</dc:creator> <dc:contributor>Csontos, Miklós</dc:contributor> <dc:creator>Gubicza, Agnes</dc:creator> <dc:creator>Halbritter, András</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51071/1/Santa_2-17ygstbip8jdj1.pdf"/> <dc:contributor>Halbritter, András</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Szilágyi, Edit</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T06:26:07Z</dcterms:available> <dc:creator>Molnár, Dániel</dc:creator> <dc:contributor>Molnár, Dániel</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Nanometer-scale resistive switching devices operated in the metallic conductance regime offer ultimately scalable and widely reconfigurable hardware elements for novel in-memory and neuromorphic computing architectures. Moreover, they exhibit high operation speed at low power arising from the ease of the electric-field-driven redistribution of only a small amount of highly mobile ionic species upon resistive switching. We investigate the memristive behavior of a so-far less explored representative of this class, the Ag/AgI material system in a point contact arrangement established by the conducting PtIr tip of a scanning probe microscope. We demonstrate stable resistive switching duty cycles and investigate the dynamical aspects of non-volatile operation in detail. The high-speed switching capabilities are explored by a custom-designed microwave setup that enables time-resolved studies of subsequent set and reset transitions upon biasing the Ag/AgI/PtIr nanojunctions with sub-nanosecond voltage pulses. Our results demonstrate the potential of Ag-based filamentary memristive nanodevices to serve as the hardware elements in high-speed neuromorphic circuits.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Csontos, Miklós</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T06:26:07Z</dc:date> <dcterms:title>Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions</dcterms:title> <dcterms:issued>2020</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51071"/> </rdf:Description> </rdf:RDF>