On the generalized fréchet distance and its applications

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
RENZ, Matthias, ed., Mohamed SARWAT, ed.. SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems. New York, NY: ACM, 2022, 35. ISBN 978-1-4503-9529-8. Available under: doi: 10.1145/3557915.3560970
Zusammenfassung

Measuring the similarity of spatio-temporal trajectories in a sensible fashion is an important building block for applications such as trajectory clustering or movement pattern analysis. However, typically employed similarity measures only take the spatial components of the trajectory into account, or are complicated combinations of different measures. In this paper we introduce the so called Generalized Fréchet distance, which extends the well-known Fréchet distance. For two polygonal curves of length n and m in d-dimensional space, the Generalized Fréchet distance enables an individual weighting of each dimension on the similarity value by using a convex function. This allows to integrate arbitrary data dimensions as e.g. temporal information in an elegant, flexible and application-aware manner. We study the Generalized Fréchet Distance for both the discrete and the continuous version of the problem, prove useful properties, and present efficient algorithms to compute the decision and optimization problem. In particular, we prove that for d ∈ O(1) the asymptotic running times of the optimization problem for the continuous version are O(nm log(nm)) under realistic assumptions, and O(nm) for the discrete version for arbitrary weight functions. Therefore the theoretical running times match those of the classical Fréchet distance. In our experimental evaluation, we demonstrate the usefulness of the Generalized Fréchet distance and study the practical behaviour of our algorithms. On sets of real-world trajectories, we confirm that the weighting of the spatial and temporal dimensions heavily impacts the relative similarity, and hence the ability to tailor the measure to the application is a useful tool.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Trajectory similarity, Fréchet distance, Algorithm analysis
Konferenz
SIGSPATIAL '22 : The 30th International Conference on Advances in Geographic Information Systems, 1. Nov. 2022 - 4. Nov. 2022, Seattle, Washington
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GUTSCHLAG, Theodor, Sabine STORANDT, 2022. On the generalized fréchet distance and its applications. SIGSPATIAL '22 : The 30th International Conference on Advances in Geographic Information Systems. Seattle, Washington, 1. Nov. 2022 - 4. Nov. 2022. In: RENZ, Matthias, ed., Mohamed SARWAT, ed.. SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems. New York, NY: ACM, 2022, 35. ISBN 978-1-4503-9529-8. Available under: doi: 10.1145/3557915.3560970
BibTex
@inproceedings{Gutschlag2022gener-66286,
  year={2022},
  doi={10.1145/3557915.3560970},
  title={On the generalized fréchet distance and its applications},
  isbn={978-1-4503-9529-8},
  publisher={ACM},
  address={New York, NY},
  booktitle={SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems},
  editor={Renz, Matthias and Sarwat, Mohamed},
  author={Gutschlag, Theodor and Storandt, Sabine},
  note={Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - Project-ID 251654672 - TRR 161. Article Number: 35}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66286">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-03T12:30:21Z</dc:date>
    <dc:creator>Gutschlag, Theodor</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <dc:contributor>Gutschlag, Theodor</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66286"/>
    <dcterms:title>On the generalized fréchet distance and its applications</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-03T12:30:21Z</dcterms:available>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dcterms:abstract xml:lang="eng">Measuring the similarity of spatio-temporal trajectories in a sensible fashion is an important building block for applications such as trajectory clustering or movement pattern analysis. However, typically employed similarity measures only take the spatial components of the trajectory into account, or are complicated combinations of different measures. In this paper we introduce the so called Generalized Fréchet distance, which extends the well-known Fréchet distance. For two polygonal curves of length n and m in d-dimensional space, the Generalized Fréchet distance enables an individual weighting of each dimension on the similarity value by using a convex function. This allows to integrate arbitrary data dimensions as e.g. temporal information in an elegant, flexible and application-aware manner. We study the Generalized Fréchet Distance for both the discrete and the continuous version of the problem, prove useful properties, and present efficient algorithms to compute the decision and optimization problem. In particular, we prove that for d ∈ O(1) the asymptotic running times of the optimization problem for the continuous version are O(nm log(nm)) under realistic assumptions, and O(nm) for the discrete version for arbitrary weight functions. Therefore the theoretical running times match those of the classical Fréchet distance. In our experimental evaluation, we demonstrate the usefulness of the Generalized Fréchet distance and study the practical behaviour of our algorithms. On sets of real-world trajectories, we confirm that the weighting of the spatial and temporal dimensions heavily impacts the relative similarity, and hence the ability to tailor the measure to the application is a useful tool.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 251654672 - TRR 161.
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen