Publikation: On the generalized fréchet distance and its applications
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Measuring the similarity of spatio-temporal trajectories in a sensible fashion is an important building block for applications such as trajectory clustering or movement pattern analysis. However, typically employed similarity measures only take the spatial components of the trajectory into account, or are complicated combinations of different measures. In this paper we introduce the so called Generalized Fréchet distance, which extends the well-known Fréchet distance. For two polygonal curves of length n and m in d-dimensional space, the Generalized Fréchet distance enables an individual weighting of each dimension on the similarity value by using a convex function. This allows to integrate arbitrary data dimensions as e.g. temporal information in an elegant, flexible and application-aware manner. We study the Generalized Fréchet Distance for both the discrete and the continuous version of the problem, prove useful properties, and present efficient algorithms to compute the decision and optimization problem. In particular, we prove that for d ∈ O(1) the asymptotic running times of the optimization problem for the continuous version are O(nm log(nm)) under realistic assumptions, and O(nm) for the discrete version for arbitrary weight functions. Therefore the theoretical running times match those of the classical Fréchet distance. In our experimental evaluation, we demonstrate the usefulness of the Generalized Fréchet distance and study the practical behaviour of our algorithms. On sets of real-world trajectories, we confirm that the weighting of the spatial and temporal dimensions heavily impacts the relative similarity, and hence the ability to tailor the measure to the application is a useful tool.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GUTSCHLAG, Theodor, Sabine STORANDT, 2022. On the generalized fréchet distance and its applications. SIGSPATIAL '22 : The 30th International Conference on Advances in Geographic Information Systems. Seattle, Washington, 1. Nov. 2022 - 4. Nov. 2022. In: RENZ, Matthias, ed., Mohamed SARWAT, ed.. SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems. New York, NY: ACM, 2022, 35. ISBN 978-1-4503-9529-8. Available under: doi: 10.1145/3557915.3560970BibTex
@inproceedings{Gutschlag2022gener-66286, year={2022}, doi={10.1145/3557915.3560970}, title={On the generalized fréchet distance and its applications}, isbn={978-1-4503-9529-8}, publisher={ACM}, address={New York, NY}, booktitle={SIGSPATIAL '22 : Proceedings of the 30th International Conference on Advances in Geographic Information Systems}, editor={Renz, Matthias and Sarwat, Mohamed}, author={Gutschlag, Theodor and Storandt, Sabine}, note={Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 251654672 - TRR 161. Article Number: 35} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66286"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-03T12:30:21Z</dc:date> <dc:creator>Gutschlag, Theodor</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Storandt, Sabine</dc:contributor> <dc:contributor>Gutschlag, Theodor</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66286"/> <dcterms:title>On the generalized fréchet distance and its applications</dcterms:title> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-03T12:30:21Z</dcterms:available> <dc:creator>Storandt, Sabine</dc:creator> <dcterms:abstract xml:lang="eng">Measuring the similarity of spatio-temporal trajectories in a sensible fashion is an important building block for applications such as trajectory clustering or movement pattern analysis. However, typically employed similarity measures only take the spatial components of the trajectory into account, or are complicated combinations of different measures. In this paper we introduce the so called Generalized Fréchet distance, which extends the well-known Fréchet distance. For two polygonal curves of length n and m in d-dimensional space, the Generalized Fréchet distance enables an individual weighting of each dimension on the similarity value by using a convex function. This allows to integrate arbitrary data dimensions as e.g. temporal information in an elegant, flexible and application-aware manner. We study the Generalized Fréchet Distance for both the discrete and the continuous version of the problem, prove useful properties, and present efficient algorithms to compute the decision and optimization problem. In particular, we prove that for d ∈ O(1) the asymptotic running times of the optimization problem for the continuous version are O(nm log(nm)) under realistic assumptions, and O(nm) for the discrete version for arbitrary weight functions. Therefore the theoretical running times match those of the classical Fréchet distance. In our experimental evaluation, we demonstrate the usefulness of the Generalized Fréchet distance and study the practical behaviour of our algorithms. On sets of real-world trajectories, we confirm that the weighting of the spatial and temporal dimensions heavily impacts the relative similarity, and hence the ability to tailor the measure to the application is a useful tool.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>