Publikation: Drawn out of the shadows : Surveying secretive forest species with camera trap distance sampling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
-
With animal species disappearing at unprecedented rates, we need an efficient monitoring method providing reliable estimates of population density and abundance, critical for the assessment of population status and trend.
-
We deployed 160 camera traps (CTs) systematically over 743 locations covering 17,127 km2 of evergreen lowland rainforest of Salonga National Park, block South, Democratic Republic of the Congo. We evaluated the applicability of CT distance sampling (CTDS) to species different in size and behaviour. To improve precision of estimates, we evaluated two methods estimating species' availability (‘A’) for detection by CTs.
-
We recorded 16,700 video clips, revealing 43 different animal taxa. We estimated densities of 14 species differing in physical, behavioural and ecological traits, and extracted species-specific availability from available video footage using two methods (a) ‘ACa’ (Cappelle et al. [2019] Am. J. Primatol., 81, e22962) and (b) ‘ARo’ (Rowcliffe et al. [2014] Methods Ecol. Evol. 5, 1170). With sample sizes being large enough, we found minor differences between ACa and ARo in estimated densities. In contrast, low detectability and reactivity to the camera were main sources of bias. CTDS proved efficient for estimating density of homogenously rather than patchily distributed species.
-
Synthesis and applications. Our application of camera trap distance sampling (CTDS) to a diverse vertebrate community demonstrates the enormous potential of this methodology for surveys of terrestrial wildlife, allowing rapid assessments of species' status and trends that can translate into effective conservation strategies. By providing the first estimates of understudied species such as the Congo peafowl, the giant ground pangolin and the cusimanses, CTDS may be used as a tool to revise these species' conservation status in the IUCN Red List of Threatened Species. Based on the constraints we encountered, we identify improvements to the current application, enhancing the general applicability of this method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BESSONE, Mattia, Hjalmar S. KÜHL, Gottfried HOHMANN, Ilka HERBINGER, Kouame Paul N'GORAN, Papy ASANZI, Pedro B. DA COSTA, Violette DÉROZIER, Ernest D. B. FOTSING, Barbara FRUTH, 2020. Drawn out of the shadows : Surveying secretive forest species with camera trap distance sampling. In: Journal of Applied Ecology. Wiley. 2020, 57(5), S. 963-974. ISSN 0021-8901. eISSN 1365-2664. Verfügbar unter: doi: 10.1111/1365-2664.13602BibTex
@article{Bessone2020Drawn-70048, year={2020}, doi={10.1111/1365-2664.13602}, title={Drawn out of the shadows : Surveying secretive forest species with camera trap distance sampling}, number={5}, volume={57}, issn={0021-8901}, journal={Journal of Applied Ecology}, pages={963--974}, author={Bessone, Mattia and Kühl, Hjalmar S. and Hohmann, Gottfried and Herbinger, Ilka and N'Goran, Kouame Paul and Asanzi, Papy and Da Costa, Pedro B. and Dérozier, Violette and Fotsing, Ernest D. B. and Fruth, Barbara} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70048"> <dc:creator>Da Costa, Pedro B.</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70048"/> <dc:creator>Fruth, Barbara</dc:creator> <dc:creator>Dérozier, Violette</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-03T13:15:13Z</dc:date> <dc:contributor>Da Costa, Pedro B.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70048/1/Bessone_2-17n9d829q2tzb5.pdf"/> <dc:creator>Fotsing, Ernest D. B.</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-03T13:15:13Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:contributor>Kühl, Hjalmar S.</dc:contributor> <dc:contributor>Hohmann, Gottfried</dc:contributor> <dcterms:title>Drawn out of the shadows : Surveying secretive forest species with camera trap distance sampling</dcterms:title> <dc:contributor>Fotsing, Ernest D. B.</dc:contributor> <dc:contributor>Fruth, Barbara</dc:contributor> <dc:contributor>Asanzi, Papy</dc:contributor> <dc:contributor>N'Goran, Kouame Paul</dc:contributor> <dc:contributor>Bessone, Mattia</dc:contributor> <dc:contributor>Herbinger, Ilka</dc:contributor> <dc:creator>Asanzi, Papy</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70048/1/Bessone_2-17n9d829q2tzb5.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Bessone, Mattia</dc:creator> <dc:creator>Kühl, Hjalmar S.</dc:creator> <dc:creator>Herbinger, Ilka</dc:creator> <dc:creator>N'Goran, Kouame Paul</dc:creator> <dcterms:abstract>1. With animal species disappearing at unprecedented rates, we need an efficient monitoring method providing reliable estimates of population density and abundance, critical for the assessment of population status and trend. 2. We deployed 160 camera traps (CTs) systematically over 743 locations covering 17,127 km<sup>2</sup> of evergreen lowland rainforest of Salonga National Park, block South, Democratic Republic of the Congo. We evaluated the applicability of CT distance sampling (CTDS) to species different in size and behaviour. To improve precision of estimates, we evaluated two methods estimating species' availability (‘A’) for detection by CTs. 3. We recorded 16,700 video clips, revealing 43 different animal taxa. We estimated densities of 14 species differing in physical, behavioural and ecological traits, and extracted species-specific availability from available video footage using two methods (a) ‘ACa’ (Cappelle et al. [2019] Am. J. Primatol., 81, e22962) and (b) ‘ARo’ (Rowcliffe et al. [2014] Methods Ecol. Evol. 5, 1170). With sample sizes being large enough, we found minor differences between ACa and ARo in estimated densities. In contrast, low detectability and reactivity to the camera were main sources of bias. CTDS proved efficient for estimating density of homogenously rather than patchily distributed species. 4. Synthesis and applications. Our application of camera trap distance sampling (CTDS) to a diverse vertebrate community demonstrates the enormous potential of this methodology for surveys of terrestrial wildlife, allowing rapid assessments of species' status and trends that can translate into effective conservation strategies. By providing the first estimates of understudied species such as the Congo peafowl, the giant ground pangolin and the cusimanses, CTDS may be used as a tool to revise these species' conservation status in the IUCN Red List of Threatened Species. Based on the constraints we encountered, we identify improvements to the current application, enhancing the general applicability of this method.</dcterms:abstract> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Dérozier, Violette</dc:contributor> <dc:creator>Hohmann, Gottfried</dc:creator> </rdf:Description> </rdf:RDF>