Publikation:

Achievable multiplicity partitions in the inverse eigenvalue problem of a graph

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Fallat, Shaun
Meagher, Karen
Nasserasr, Shahla
Plosker, Sarah
Yang, Boting

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Special Matrices. Walter de Gruyter GmbH. 2019, 7(1), S. 276-290. eISSN 2300-7451. Verfügbar unter: doi: 10.1515/spma-2019-0022

Zusammenfassung

Associated to a graph G is a set 𝒮(G) of all real-valued symmetric matrices whose off-diagonal entries are nonzero precisely when the corresponding vertices of the graph are adjacent, and the diagonal entries are free to be chosen. If G has n vertices, then the multiplicities of the eigenvalues of any matrix in 𝒮 (G) partition n ; this is called a multiplicity partition. We study graphs for which a multiplicity partition with only two integers is possible. The graphs G for which there is a matrix in 𝒮 (G) with partitions [n − 2,2] have been characterized. We find families of graphs G for which there is a matrix in 𝒮 (G) with multiplicity partition [n − k , k] for k ≥ 2. We focus on generalizations of the complete multipartite graphs. We provide some methods to construct families of graphs with given multiplicity partitions starting from smaller such graphs. We also give constructions for graphs with matrix in 𝒮 (G) with multiplicity partition [n − k ,k] to show the complexities of characterizing these graphs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

inverse eigenvalue problem, multiplicity partition, adjacency matrix, minimum rank, distinct eigenvalues, graphs

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ADM, Mohammad, Shaun FALLAT, Karen MEAGHER, Shahla NASSERASR, Sarah PLOSKER, Boting YANG, 2019. Achievable multiplicity partitions in the inverse eigenvalue problem of a graph. In: Special Matrices. Walter de Gruyter GmbH. 2019, 7(1), S. 276-290. eISSN 2300-7451. Verfügbar unter: doi: 10.1515/spma-2019-0022
BibTex
@article{Adm2019-01-01Achie-73022,
  title={Achievable multiplicity partitions in the inverse eigenvalue problem of a graph},
  year={2019},
  doi={10.1515/spma-2019-0022},
  number={1},
  volume={7},
  journal={Special Matrices},
  pages={276--290},
  author={Adm, Mohammad and Fallat, Shaun and Meagher, Karen and Nasserasr, Shahla and Plosker, Sarah and Yang, Boting}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73022">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73022"/>
    <dc:creator>Fallat, Shaun</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-14T09:12:04Z</dcterms:available>
    <dc:contributor>Meagher, Karen</dc:contributor>
    <dcterms:title>Achievable multiplicity partitions in the inverse eigenvalue problem of a graph</dcterms:title>
    <dcterms:issued>2019-01-01</dcterms:issued>
    <dc:contributor>Plosker, Sarah</dc:contributor>
    <dcterms:abstract>Associated to a graph G is a set 𝒮(G) of all real-valued symmetric matrices whose off-diagonal entries are nonzero precisely when the corresponding vertices of the graph are adjacent, and the diagonal entries are free to be chosen. If G has n vertices, then the multiplicities of the eigenvalues of any matrix in 𝒮 (G) partition n ; this is called a multiplicity partition. 
We study graphs for which a multiplicity partition with only two integers is possible. The graphs G for which there is a matrix in 𝒮 (G) with partitions [n − 2,2] have been characterized. We find families of graphs G for which there is a matrix in 𝒮 (G) with multiplicity partition [n − k , k] for k ≥ 2. We focus on generalizations of the complete multipartite graphs. We provide some methods to construct families of graphs with given multiplicity partitions starting from smaller such graphs. We also give constructions for graphs with matrix in 𝒮 (G) with multiplicity partition [n − k ,k] to show the complexities of characterizing these graphs.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-14T09:12:04Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Meagher, Karen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:creator>Nasserasr, Shahla</dc:creator>
    <dc:contributor>Yang, Boting</dc:contributor>
    <dc:creator>Adm, Mohammad</dc:creator>
    <dc:creator>Yang, Boting</dc:creator>
    <dc:contributor>Fallat, Shaun</dc:contributor>
    <dc:creator>Plosker, Sarah</dc:creator>
    <dc:contributor>Adm, Mohammad</dc:contributor>
    <dc:contributor>Nasserasr, Shahla</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen