Publikation: Achievable multiplicity partitions in the inverse eigenvalue problem of a graph
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Associated to a graph G is a set 𝒮(G) of all real-valued symmetric matrices whose off-diagonal entries are nonzero precisely when the corresponding vertices of the graph are adjacent, and the diagonal entries are free to be chosen. If G has n vertices, then the multiplicities of the eigenvalues of any matrix in 𝒮 (G) partition n ; this is called a multiplicity partition. We study graphs for which a multiplicity partition with only two integers is possible. The graphs G for which there is a matrix in 𝒮 (G) with partitions [n − 2,2] have been characterized. We find families of graphs G for which there is a matrix in 𝒮 (G) with multiplicity partition [n − k , k] for k ≥ 2. We focus on generalizations of the complete multipartite graphs. We provide some methods to construct families of graphs with given multiplicity partitions starting from smaller such graphs. We also give constructions for graphs with matrix in 𝒮 (G) with multiplicity partition [n − k ,k] to show the complexities of characterizing these graphs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ADM, Mohammad, Shaun FALLAT, Karen MEAGHER, Shahla NASSERASR, Sarah PLOSKER, Boting YANG, 2019. Achievable multiplicity partitions in the inverse eigenvalue problem of a graph. In: Special Matrices. Walter de Gruyter GmbH. 2019, 7(1), S. 276-290. eISSN 2300-7451. Verfügbar unter: doi: 10.1515/spma-2019-0022BibTex
@article{Adm2019-01-01Achie-73022, title={Achievable multiplicity partitions in the inverse eigenvalue problem of a graph}, year={2019}, doi={10.1515/spma-2019-0022}, number={1}, volume={7}, journal={Special Matrices}, pages={276--290}, author={Adm, Mohammad and Fallat, Shaun and Meagher, Karen and Nasserasr, Shahla and Plosker, Sarah and Yang, Boting} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73022"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73022"/> <dc:creator>Fallat, Shaun</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-14T09:12:04Z</dcterms:available> <dc:contributor>Meagher, Karen</dc:contributor> <dcterms:title>Achievable multiplicity partitions in the inverse eigenvalue problem of a graph</dcterms:title> <dcterms:issued>2019-01-01</dcterms:issued> <dc:contributor>Plosker, Sarah</dc:contributor> <dcterms:abstract>Associated to a graph G is a set 𝒮(G) of all real-valued symmetric matrices whose off-diagonal entries are nonzero precisely when the corresponding vertices of the graph are adjacent, and the diagonal entries are free to be chosen. If G has n vertices, then the multiplicities of the eigenvalues of any matrix in 𝒮 (G) partition n ; this is called a multiplicity partition. We study graphs for which a multiplicity partition with only two integers is possible. The graphs G for which there is a matrix in 𝒮 (G) with partitions [n − 2,2] have been characterized. We find families of graphs G for which there is a matrix in 𝒮 (G) with multiplicity partition [n − k , k] for k ≥ 2. We focus on generalizations of the complete multipartite graphs. We provide some methods to construct families of graphs with given multiplicity partitions starting from smaller such graphs. We also give constructions for graphs with matrix in 𝒮 (G) with multiplicity partition [n − k ,k] to show the complexities of characterizing these graphs.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-14T09:12:04Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Meagher, Karen</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:creator>Nasserasr, Shahla</dc:creator> <dc:contributor>Yang, Boting</dc:contributor> <dc:creator>Adm, Mohammad</dc:creator> <dc:creator>Yang, Boting</dc:creator> <dc:contributor>Fallat, Shaun</dc:contributor> <dc:creator>Plosker, Sarah</dc:creator> <dc:contributor>Adm, Mohammad</dc:contributor> <dc:contributor>Nasserasr, Shahla</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>