Publikation:

Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients

Lade...
Vorschaubild

Dateien

Feineis_2-171a3bcqba3tk2.pdf
Feineis_2-171a3bcqba3tk2.pdfGröße: 1.36 MBDownloads: 255

Datum

2021

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this thesis, we consider a convex, elliptic PDE-constrained optimal control problem that is subject to uncertainty. To solve this problem numerically we use three stochastic descent methods, namely the Stochastic Gradient method, the Stochastic Variance Reduced Gradient method and the Stochastic Adaptive Sampling method. We state theoretical convergence results for the three stochastic descent methods and present a setting in which we conduct numerical tests to compare the convergence behaviour and the CPU time. The numerical experiments show that a modification of the Stochastic Adaptive Sampling method in combination with the Barzilai-Borwein step size rule is the superior choice for the specific problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Stochastic Descent Methods, PDE-Constrained Optimization, Stochastic Gradient, PDE with uncertain coefficients, Stochastic Optimization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FEINEIS, Calvin, 2021. Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Feineis2021Effic-53934,
  year={2021},
  title={Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients},
  address={Konstanz},
  school={Universität Konstanz},
  author={Feineis, Calvin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53934">
    <dc:language>eng</dc:language>
    <dc:creator>Feineis, Calvin</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53934/3/Feineis_2-171a3bcqba3tk2.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T05:38:45Z</dcterms:available>
    <dcterms:title>Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T05:38:45Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">In this thesis, we consider a convex, elliptic PDE-constrained optimal control problem that is subject to uncertainty. To solve this problem numerically we use three stochastic descent methods, namely the Stochastic Gradient method, the Stochastic Variance Reduced Gradient method and the Stochastic Adaptive Sampling method. We state theoretical convergence results for the three stochastic descent methods and present a setting in which we conduct numerical tests to compare the convergence behaviour and the CPU time. The numerical experiments show that a modification of the Stochastic Adaptive Sampling method in combination with the Barzilai-Borwein step size rule is the superior choice for the specific problem.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53934/3/Feineis_2-171a3bcqba3tk2.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53934"/>
    <dc:contributor>Feineis, Calvin</dc:contributor>
    <dcterms:issued>2021</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2021
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen