Publikation: Better models by discarding data?
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In macromolecular X-ray crystallography, typical data sets have substantial multiplicity. This can be used to calculate the consistency of repeated measurements and thereby assess data quality. Recently, the properties of a correlation coefficient, CC1/2, that can be used for this purpose were characterized and it was shown that CC1/2 has superior properties compared with "merging" R values. A derived quantity, CC*, links data and model quality. Using experimental data sets, the behaviour of CC1/2 and the more conventional indicators were compared in two situations of practical importance: merging data sets from different crystals and selectively rejecting weak observations or (merged) unique reflections from a data set. In these situations controlled "paired-refinement" tests show that even though discarding the weaker data leads to improvements in the merging R values, the refined models based on these data are of lower quality. These results show the folly of such data-filtering practices aimed at improving the merging R values. Interestingly, in all of these tests CC1/2 is the one data-quality indicator for which the behaviour accurately reflects which of the alternative data-handling strategies results in the best-quality refined model. Its properties in the presence of systematic error are documented and discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIEDERICHS, Kay, P. Andrew KARPLUS, 2013. Better models by discarding data?. In: Acta Crystallographica Section D : Biological Crystallography. 2013, 69(7), pp. 1215-1222. ISSN 0907-4449. eISSN 1399-0047. Available under: doi: 10.1107/S0907444913001121BibTex
@article{Diederichs2013-07Bette-26309, year={2013}, doi={10.1107/S0907444913001121}, title={Better models by discarding data?}, number={7}, volume={69}, issn={0907-4449}, journal={Acta Crystallographica Section D : Biological Crystallography}, pages={1215--1222}, author={Diederichs, Kay and Karplus, P. Andrew} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26309"> <dcterms:bibliographicCitation>Acta Crystallographica Section D ; 69 (2013), 7. - S. 1215-1222</dcterms:bibliographicCitation> <dcterms:title>Better models by discarding data?</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Diederichs, Kay</dc:creator> <dc:contributor>Karplus, P. Andrew</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Karplus, P. Andrew</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26309"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2013-07</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26309/2/Diederichs_263092.pdf"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26309/2/Diederichs_263092.pdf"/> <dcterms:abstract xml:lang="eng">In macromolecular X-ray crystallography, typical data sets have substantial multiplicity. This can be used to calculate the consistency of repeated measurements and thereby assess data quality. Recently, the properties of a correlation coefficient, CC<sub>1/2</sub>, that can be used for this purpose were characterized and it was shown that CC<sub>1/2</sub> has superior properties compared with "merging" R values. A derived quantity, CC*, links data and model quality. Using experimental data sets, the behaviour of CC<sub>1/2</sub> and the more conventional indicators were compared in two situations of practical importance: merging data sets from different crystals and selectively rejecting weak observations or (merged) unique reflections from a data set. In these situations controlled "paired-refinement" tests show that even though discarding the weaker data leads to improvements in the merging R values, the refined models based on these data are of lower quality. These results show the folly of such data-filtering practices aimed at improving the merging R values. Interestingly, in all of these tests CC<sub>1/2</sub> is the one data-quality indicator for which the behaviour accurately reflects which of the alternative data-handling strategies results in the best-quality refined model. Its properties in the presence of systematic error are documented and discussed.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-11T13:38:17Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-11T13:38:17Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Diederichs, Kay</dc:contributor> </rdf:Description> </rdf:RDF>