Publikation:

Pixel-oriented Visualization Techniques for Exploring Very Large Databases

Lade...
Vorschaubild

Datum

1996

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of computational and graphical statistics. 1996, 5(1), pp. 58-77

Zusammenfassung

An important goal of visualization technology is to support the exploration and analysis of very large amounts of data. In this paper, we describe a set of pixeloriented visualization techniques which use each pixel of the display to visualize one data value and therefore allow the visualization of the largest amount of data possible. Most of the techniques have been specifically designed for visualizing and querying large databases. The techniques may be divided into query-independent techniques which directly visualize the data (or a certain portion of it) and query-dependent techniques which visualize the data in the context of a specific query. Examples for the class of query-independent techniques are the screen-filling curve and recursive pattern techniques. The screen-filling curve techniques are based on the well-known Morton and Peano-Hilbert curve algorithms, and the recursive pattern technique is based on a generic recursive scheme which generalizes a wide range of pixel-oriented arrangements for visualizing large data sets. Examples for the class of query-dependent techniques are the snake-spiral and snakeaxes techniques, which visualize the distances with respect to a database query and arrange the most relevant data items in the center of the display. Beside describing the basic ideas of our techniques, we provide example visualizations generated by the various techniques, which demonstrate the usefulness of our techniques and show some of their advantages and disadvantages.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visualizing Large Data Sets, Visualizing Multidimensional and Multivariate Data, Visualizing Large Databases

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., 1996. Pixel-oriented Visualization Techniques for Exploring Very Large Databases. In: Journal of computational and graphical statistics. 1996, 5(1), pp. 58-77
BibTex
@article{Keim1996Pixel-5721,
  year={1996},
  title={Pixel-oriented Visualization Techniques for Exploring Very Large Databases},
  number={1},
  volume={5},
  journal={Journal of computational and graphical statistics},
  pages={58--77},
  author={Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5721">
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:35Z</dc:date>
    <dc:format>application/pdf</dc:format>
    <dcterms:bibliographicCitation>First publ. in: Journal of computational and graphical statistics 5 (1996), 1, pp. 58-77</dcterms:bibliographicCitation>
    <dcterms:issued>1996</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:35Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5721"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Pixel-oriented Visualization Techniques for Exploring Very Large Databases</dcterms:title>
    <dcterms:abstract xml:lang="eng">An important goal of visualization technology is to support the exploration and analysis of very large amounts of data. In this paper, we describe a set of pixeloriented visualization techniques which use each pixel of the display to visualize one data value and therefore allow the visualization of the largest amount of data possible. Most of the techniques have been specifically designed for visualizing and querying large databases. The techniques may be divided into query-independent techniques which directly visualize the data (or a certain portion of it) and query-dependent techniques which visualize the data in the context of a specific query. Examples for the class of query-independent techniques are the screen-filling curve and recursive pattern techniques. The screen-filling curve techniques are based on the well-known Morton and Peano-Hilbert curve algorithms, and the recursive pattern technique is based on a generic recursive scheme which generalizes a wide range of pixel-oriented arrangements for visualizing large data sets. Examples for the class of query-dependent techniques are the snake-spiral and snakeaxes techniques, which visualize the distances with respect to a database query and arrange the most relevant data items in the center of the display. Beside describing the basic ideas of our techniques, we provide example visualizations generated by the various techniques, which demonstrate the usefulness of our techniques and show some of their advantages and disadvantages.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5721/1/Pixel_oriented_Visualization_Techniques_for_Exploring_Very_Large_Databases.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5721/1/Pixel_oriented_Visualization_Techniques_for_Exploring_Very_Large_Databases.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen