Publikation:

LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results

Lade...
Vorschaubild

Dateien

El-Assady_2-16s2fc0eok0198.pdf
El-Assady_2-16s2fc0eok0198.pdfGröße: 889.96 KBDownloads: 470

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ: IEEE, 2018. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534018

Zusammenfassung

We present LTMA, a Layered Topic Matching approach for the unsupervised comparative analysis of topic modeling results. Due to the vast number of available modeling algorithms, an efficient and effective comparison of their results is detrimental to a data- and task-driven selection of a model. LTMA automates this comparative analysis by providing topic matching based on two layers (document-overlap and keywordsimilarity), creating a novel topic-match data structure. This data structure builds a basis for model exploration and optimization, thus, allowing for an efficient evaluation of their performance in the context of a given type of text data and task. This is especially important for text types where an annotated gold standard dataset is not readily available and, therefore, quantitative evaluation methods are not applicable. We confirm the usefulness of our technique based on three use cases, namely: (1) the automatic comparative evaluation of topic models, (2) the visual exploration of topic modeling differences, and (3) the optimization of topic modeling results through combining matches.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), 17. Sept. 2018 - 19. Sept. 2018, Konstanz
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EL-ASSADY, Mennatallah, Fabian SPERRLE, Rita SEVASTJANOVA, Michael SEDLMAIR, Daniel A. KEIM, 2018. LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results. 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Konstanz, 17. Sept. 2018 - 19. Sept. 2018. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ: IEEE, 2018. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534018
BibTex
@inproceedings{ElAssady2018Layer-45052,
  year={2018},
  doi={10.1109/BDVA.2018.8534018},
  title={LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results},
  isbn={978-1-5386-9194-6},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA)},
  author={El-Assady, Mennatallah and Sperrle, Fabian and Sevastjanova, Rita and Sedlmair, Michael and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45052">
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dcterms:title>LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:43:58Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45052"/>
    <dcterms:abstract xml:lang="eng">We present LTMA, a Layered Topic Matching approach for the unsupervised comparative analysis of topic modeling results. Due to the vast number of available modeling algorithms, an efficient and effective comparison of their results is detrimental to a data- and task-driven selection of a model. LTMA automates this comparative analysis by providing topic matching based on two layers (document-overlap and keywordsimilarity), creating a novel topic-match data structure. This data structure builds a basis for model exploration and optimization, thus, allowing for an efficient evaluation of their performance in the context of a given type of text data and task. This is especially important for text types where an annotated gold standard dataset is not readily available and, therefore, quantitative evaluation methods are not applicable. We confirm the usefulness of our technique based on three use cases, namely: (1) the automatic comparative evaluation of topic models, (2) the visual exploration of topic modeling differences, and (3) the optimization of topic modeling results through combining matches.</dcterms:abstract>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sperrle, Fabian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45052/1/El-Assady_2-16s2fc0eok0198.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45052/1/El-Assady_2-16s2fc0eok0198.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:43:58Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen