Publikation: LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present LTMA, a Layered Topic Matching approach for the unsupervised comparative analysis of topic modeling results. Due to the vast number of available modeling algorithms, an efficient and effective comparison of their results is detrimental to a data- and task-driven selection of a model. LTMA automates this comparative analysis by providing topic matching based on two layers (document-overlap and keywordsimilarity), creating a novel topic-match data structure. This data structure builds a basis for model exploration and optimization, thus, allowing for an efficient evaluation of their performance in the context of a given type of text data and task. This is especially important for text types where an annotated gold standard dataset is not readily available and, therefore, quantitative evaluation methods are not applicable. We confirm the usefulness of our technique based on three use cases, namely: (1) the automatic comparative evaluation of topic models, (2) the visual exploration of topic modeling differences, and (3) the optimization of topic modeling results through combining matches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EL-ASSADY, Mennatallah, Fabian SPERRLE, Rita SEVASTJANOVA, Michael SEDLMAIR, Daniel A. KEIM, 2018. LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results. 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Konstanz, 17. Sept. 2018 - 19. Sept. 2018. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). Piscataway, NJ: IEEE, 2018. ISBN 978-1-5386-9194-6. Available under: doi: 10.1109/BDVA.2018.8534018BibTex
@inproceedings{ElAssady2018Layer-45052, year={2018}, doi={10.1109/BDVA.2018.8534018}, title={LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results}, isbn={978-1-5386-9194-6}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA)}, author={El-Assady, Mennatallah and Sperrle, Fabian and Sevastjanova, Rita and Sedlmair, Michael and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45052"> <dc:creator>El-Assady, Mennatallah</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Sperrle, Fabian</dc:contributor> <dc:creator>Sevastjanova, Rita</dc:creator> <dcterms:title>LTMA : Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Sevastjanova, Rita</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:43:58Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Sedlmair, Michael</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45052"/> <dcterms:abstract xml:lang="eng">We present LTMA, a Layered Topic Matching approach for the unsupervised comparative analysis of topic modeling results. Due to the vast number of available modeling algorithms, an efficient and effective comparison of their results is detrimental to a data- and task-driven selection of a model. LTMA automates this comparative analysis by providing topic matching based on two layers (document-overlap and keywordsimilarity), creating a novel topic-match data structure. This data structure builds a basis for model exploration and optimization, thus, allowing for an efficient evaluation of their performance in the context of a given type of text data and task. This is especially important for text types where an annotated gold standard dataset is not readily available and, therefore, quantitative evaluation methods are not applicable. We confirm the usefulness of our technique based on three use cases, namely: (1) the automatic comparative evaluation of topic models, (2) the visual exploration of topic modeling differences, and (3) the optimization of topic modeling results through combining matches.</dcterms:abstract> <dcterms:issued>2018</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Sperrle, Fabian</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45052/1/El-Assady_2-16s2fc0eok0198.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45052/1/El-Assady_2-16s2fc0eok0198.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:43:58Z</dc:date> </rdf:Description> </rdf:RDF>