Urban Mobility Analysis With Mobile Network Data : A Visual Analytics Approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Urban planning and intelligent transportation management are facing key challenges in today's ever more urbanized world. Providing the right tools to city planners is crucial to cope with these challenges. Data collected from citizens' mobile communication can be used as the foundation for such tools. These kinds of data can facilitate various analysis tasks, such as the extraction of human movement patterns or determining the urban dynamics of a city. City planners can closely monitor such patterns based on which strategic decisions can be taken to improve a city's infrastructure. In this paper, we introduce a novel visual analytics approach for pattern exploration and search in global system for mobile communications mobile networks. We define geospatial and matrix representations of data, which can be interactively navigated. The approach integrates data visualization with suitable data analysis algorithms, allowing to spatially and temporally compare mobile usage, identify regularities, as well as anomalies in daily mobility patterns across regions and user groups. As an extension to our visual analytics approach, we further introduce space-time prisms with uncertain markers to visually analyze the uncertainty of urban mobility patterns.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SENARATNE, Hansi, Manuel MUELLER, Michael BEHRISCH, Felipe LALANNE, Javier BUSTOS-JIMENEZ, Jörn SCHNEIDEWIND, Daniel A. KEIM, Tobias SCHRECK, 2018. Urban Mobility Analysis With Mobile Network Data : A Visual Analytics Approach. In: IEEE Transactions on Intelligent Transportation Systems. 2018, 19(5), pp. 1537-1546. ISSN 1524-9050. eISSN 1558-0016. Available under: doi: 10.1109/TITS.2017.2727281BibTex
@article{Senaratne2018-05Urban-41300, year={2018}, doi={10.1109/TITS.2017.2727281}, title={Urban Mobility Analysis With Mobile Network Data : A Visual Analytics Approach}, number={5}, volume={19}, issn={1524-9050}, journal={IEEE Transactions on Intelligent Transportation Systems}, pages={1537--1546}, author={Senaratne, Hansi and Mueller, Manuel and Behrisch, Michael and Lalanne, Felipe and Bustos-Jimenez, Javier and Schneidewind, Jörn and Keim, Daniel A. and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41300"> <dc:creator>Schreck, Tobias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41300/1/Senaratne_2-16jjkfvirxtwr0.pdf"/> <dc:creator>Behrisch, Michael</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Senaratne, Hansi</dc:contributor> <dcterms:title>Urban Mobility Analysis With Mobile Network Data : A Visual Analytics Approach</dcterms:title> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Lalanne, Felipe</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-13T12:04:10Z</dc:date> <dc:creator>Bustos-Jimenez, Javier</dc:creator> <dc:contributor>Behrisch, Michael</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41300/1/Senaratne_2-16jjkfvirxtwr0.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Mueller, Manuel</dc:creator> <dc:creator>Lalanne, Felipe</dc:creator> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:creator>Schneidewind, Jörn</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41300"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Senaratne, Hansi</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Mueller, Manuel</dc:contributor> <dcterms:issued>2018-05</dcterms:issued> <dcterms:abstract xml:lang="eng">Urban planning and intelligent transportation management are facing key challenges in today's ever more urbanized world. Providing the right tools to city planners is crucial to cope with these challenges. Data collected from citizens' mobile communication can be used as the foundation for such tools. These kinds of data can facilitate various analysis tasks, such as the extraction of human movement patterns or determining the urban dynamics of a city. City planners can closely monitor such patterns based on which strategic decisions can be taken to improve a city's infrastructure. In this paper, we introduce a novel visual analytics approach for pattern exploration and search in global system for mobile communications mobile networks. We define geospatial and matrix representations of data, which can be interactively navigated. The approach integrates data visualization with suitable data analysis algorithms, allowing to spatially and temporally compare mobile usage, identify regularities, as well as anomalies in daily mobility patterns across regions and user groups. As an extension to our visual analytics approach, we further introduce space-time prisms with uncertain markers to visually analyze the uncertainty of urban mobility patterns.</dcterms:abstract> <dc:contributor>Bustos-Jimenez, Javier</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-13T12:04:10Z</dcterms:available> </rdf:Description> </rdf:RDF>