Publikation:

Knowledge-based and Data-driven Models in Arrhythmia Fuzzy Classification

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2001

Autor:innen

Silipo, Rosaria
Vergassola, Rossano
Zong, Wei

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methods of Information in Medicine. 2001, 40(5), pp. 397-403. ISSN 0026-1270

Zusammenfassung

Objectives: Fuzzy rules automatically derived from a set of training examples quite often produce better classification results than fuzzy rules translated from medical knowledge. This study aims to investigate the difference in domain representation between a knowledge- based and a data-driven fuzzy system applied to an electrocardiography classification problem.


Methods: For a three-class electrocardiographic arrhythmia classification task a set of fifteen fuzzy rules is derived from medical expertise on the basis of twelve electrocardiographic measures. A second set of fuzzy rules is automatically constructed on thirtynine MIT-BIH database’s records. The performances of the two classifiers on thirteen different records are comparable and up to a certain extent complementary. The two fuzzy models are then analyzed, by using the concept of information gain to estimate the impact of each ECG measure on each fuzzy decision process.


Results: Both systems rely on the beat prematurity degree and the QRS complex width and neglect the P wave existence and the ST segment features. The PR interval is not well characterized across the fuzzy medical rules while it plays an important role in the data-driven fuzzy system. The T wave area shows a higher information gain in the knowledge based decision process, and is not very much exploited by the data-driven system.


Conclusions: The main difference between a human designed and a data driven ECG arrhythmia classifier is found about the PR interval and the T wave.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SILIPO, Rosaria, Rossano VERGASSOLA, Wei ZONG, Michael R. BERTHOLD, 2001. Knowledge-based and Data-driven Models in Arrhythmia Fuzzy Classification. In: Methods of Information in Medicine. 2001, 40(5), pp. 397-403. ISSN 0026-1270
BibTex
@article{Silipo2001Knowl-24074,
  year={2001},
  title={Knowledge-based and Data-driven Models in Arrhythmia Fuzzy Classification},
  number={5},
  volume={40},
  issn={0026-1270},
  journal={Methods of Information in Medicine},
  pages={397--403},
  author={Silipo, Rosaria and Vergassola, Rossano and Zong, Wei and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24074">
    <dc:creator>Silipo, Rosaria</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Vergassola, Rossano</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:contributor>Silipo, Rosaria</dc:contributor>
    <dc:contributor>Vergassola, Rossano</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-15T06:25:03Z</dc:date>
    <dcterms:bibliographicCitation>Methods of Information in Medicine ; 40 (2001), 5. - S. 397-403</dcterms:bibliographicCitation>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Zong, Wei</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-15T06:25:03Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2001</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Knowledge-based and Data-driven Models in Arrhythmia Fuzzy Classification</dcterms:title>
    <dcterms:abstract xml:lang="eng">Objectives: Fuzzy rules automatically derived from a set of training examples quite often produce better classification results than fuzzy rules translated from medical knowledge. This study aims to investigate the difference in domain representation between a knowledge- based and a data-driven fuzzy system applied to an electrocardiography classification problem.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Methods: For a three-class electrocardiographic arrhythmia classification task a set of fifteen fuzzy rules is derived from medical expertise on the basis of twelve electrocardiographic measures. A second set of fuzzy rules is automatically constructed on thirtynine MIT-BIH database’s records. The performances of the two classifiers on thirteen different records are comparable and up to a certain extent complementary. The two fuzzy models are then analyzed, by using the concept of information gain to estimate the impact of each ECG measure on each fuzzy decision process.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Results: Both systems rely on the beat prematurity degree and the QRS complex width and neglect the P wave existence and the ST segment features. The PR interval is not well characterized across the fuzzy medical rules while it plays an important role in the data-driven fuzzy system. The T wave area shows a higher information gain in the knowledge based decision process, and is not very much exploited by the data-driven system.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Conclusions: The main difference between a human designed and a data driven ECG arrhythmia classifier is found about the PR interval and the T wave.</dcterms:abstract>
    <dc:contributor>Zong, Wei</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24074"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen