Publikation:

Moment problem in infinitely many variables

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Ghasemi, Mehdi
Marshall, Murray

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The multivariate moment problem is investigated in the general context of the polynomial algebra R[xi∣i∈Ω] in an arbitrary number of variables xi, i∈Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland's theorem [Amer. J. Math., 58 (1936) 164-168] and Nussbaum's theorem [Ark. Math., 6 (1965) 179-191] are proved. Lasserre's description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[xi∣i∈Ω] in [Trans. Amer. Math. Soc., 365 (2013) 2489-2504] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2014. Moment problem in infinitely many variables
BibTex
@unpublished{Ghasemi2014Momen-30958,
  year={2014},
  title={Moment problem in infinitely many variables},
  author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30958">
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30958"/>
    <dc:creator>Marshall, Murray</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T08:26:26Z</dc:date>
    <dc:creator>Ghasemi, Mehdi</dc:creator>
    <dcterms:abstract xml:lang="eng">The multivariate moment problem is investigated in the general context of the polynomial algebra R[xi∣i∈Ω] in an arbitrary number of variables xi, i∈Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland's theorem [Amer. J. Math., 58 (1936) 164-168] and Nussbaum's theorem [Ark. Math., 6 (1965) 179-191] are proved. Lasserre's description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[xi∣i∈Ω] in [Trans. Amer. Math. Soc., 365 (2013) 2489-2504] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author.</dcterms:abstract>
    <dc:contributor>Marshall, Murray</dc:contributor>
    <dc:contributor>Ghasemi, Mehdi</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Moment problem in infinitely many variables</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T08:26:26Z</dcterms:available>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen