Publikation: Moment problem in infinitely many variables
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The multivariate moment problem is investigated in the general context of the polynomial algebra R[xi∣i∈Ω] in an arbitrary number of variables xi, i∈Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland's theorem [Amer. J. Math., 58 (1936) 164-168] and Nussbaum's theorem [Ark. Math., 6 (1965) 179-191] are proved. Lasserre's description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[xi∣i∈Ω] in [Trans. Amer. Math. Soc., 365 (2013) 2489-2504] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2014. Moment problem in infinitely many variablesBibTex
@unpublished{Ghasemi2014Momen-30958, year={2014}, title={Moment problem in infinitely many variables}, author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30958"> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30958"/> <dc:creator>Marshall, Murray</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T08:26:26Z</dc:date> <dc:creator>Ghasemi, Mehdi</dc:creator> <dcterms:abstract xml:lang="eng">The multivariate moment problem is investigated in the general context of the polynomial algebra R[xi∣i∈Ω] in an arbitrary number of variables xi, i∈Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland's theorem [Amer. J. Math., 58 (1936) 164-168] and Nussbaum's theorem [Ark. Math., 6 (1965) 179-191] are proved. Lasserre's description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[xi∣i∈Ω] in [Trans. Amer. Math. Soc., 365 (2013) 2489-2504] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author.</dcterms:abstract> <dc:contributor>Marshall, Murray</dc:contributor> <dc:contributor>Ghasemi, Mehdi</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Moment problem in infinitely many variables</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T08:26:26Z</dcterms:available> <dc:contributor>Kuhlmann, Salma</dc:contributor> </rdf:Description> </rdf:RDF>