Publikation: One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in Optimization
Lade...
Dateien
Datum
2001
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
An approach to solve constrained minimization problems is to integrate a corresponding index 2 differential algebraic equation (DAE). Here corresponding means that the omega-limit sets of the DAE dynamics are local solutions of the minimization problem. In order to obtain an efficient optimization code we analyse the behavior of certain Runge-Kutta and linear multistep discretizations applied to these DAEs. It is shown that the discrete dynamics reproduces the geometric properties and the long time behavior of the continuous system correctly. Finally, we compare the DAE approach with a classical SQP-method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHROPP, Johannes, 2001. One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in OptimizationBibTex
@unpublished{Schropp2001Multi-688, year={2001}, title={One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in Optimization}, author={Schropp, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/688"> <dc:contributor>Schropp, Johannes</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/688"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">An approach to solve constrained minimization problems is to integrate a corresponding index 2 differential algebraic equation (DAE). Here corresponding means that the omega-limit sets of the DAE dynamics are local solutions of the minimization problem. In order to obtain an efficient optimization code we analyse the behavior of certain Runge-Kutta and linear multistep discretizations applied to these DAEs. It is shown that the discrete dynamics reproduces the geometric properties and the long time behavior of the continuous system correctly. Finally, we compare the DAE approach with a classical SQP-method.</dcterms:abstract> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:30Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:30Z</dc:date> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schropp, Johannes</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/688/1/preprint_148.pdf"/> <dcterms:issued>2001</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/688/1/preprint_148.pdf"/> <dcterms:title>One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in Optimization</dcterms:title> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja