Publikation:

One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in Optimization

Lade...
Vorschaubild

Dateien

preprint_148.pdf
preprint_148.pdfGröße: 274.52 KBDownloads: 208

Datum

2001

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

An approach to solve constrained minimization problems is to integrate a corresponding index 2 differential algebraic equation (DAE). Here corresponding means that the omega-limit sets of the DAE dynamics are local solutions of the minimization problem. In order to obtain an efficient optimization code we analyse the behavior of certain Runge-Kutta and linear multistep discretizations applied to these DAEs. It is shown that the discrete dynamics reproduces the geometric properties and the long time behavior of the continuous system correctly. Finally, we compare the DAE approach with a classical SQP-method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHROPP, Johannes, 2001. One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in Optimization
BibTex
@unpublished{Schropp2001Multi-688,
  year={2001},
  title={One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in Optimization},
  author={Schropp, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/688">
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/688"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">An approach to solve constrained minimization problems is to integrate a corresponding index 2 differential algebraic equation (DAE). Here corresponding means that the omega-limit sets of the DAE dynamics are local solutions of the minimization problem. In order to obtain an efficient optimization code we analyse the behavior of certain Runge-Kutta and linear multistep discretizations applied to these DAEs. It is shown that the discrete dynamics reproduces the geometric properties and the long time behavior of the continuous system correctly. Finally, we compare the DAE approach with a classical SQP-method.</dcterms:abstract>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:30Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:30Z</dc:date>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schropp, Johannes</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/688/1/preprint_148.pdf"/>
    <dcterms:issued>2001</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/688/1/preprint_148.pdf"/>
    <dcterms:title>One- and Multistep Discretizations of Index 2 Differential Algebraic Systems and their use in Optimization</dcterms:title>
    <dc:format>application/pdf</dc:format>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen