Publikation:

Examination of the Connection Between the Horn Problem and the Lax Conjecture

Lade...
Vorschaubild

Dateien

Hess_2-160cfrqubrq6n2.pdf
Hess_2-160cfrqubrq6n2.pdfGröße: 2.44 MBDownloads: 232

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this Master's thesis, we introduce the additive and multiplicative Horn's Problem and verify the equivalence of both formulations as given by Klyachko. Furthermore, we present a solution to the Horn's Problem following Knutson and Tao and establish the famous Lax conjecture. We provide a solution to the latter as it is given by Grinshpan et al. in the Helton-Vinnikov Theorem. Lastly, we elaborate on the connection between the multiplicative Horn's Problem and Vinnikov curves following Speyer and draw our own conclusions about the connection between the Horn's problem and the Lax conjecture.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Horn's Problem, Lax Conjecture, Vinnikov Curves

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HESS, Sarah, 2020. Examination of the Connection Between the Horn Problem and the Lax Conjecture [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Hess2020Exami-60021,
  year={2020},
  title={Examination of the Connection Between the Horn Problem and the Lax Conjecture},
  address={Konstanz},
  school={Universität Konstanz},
  author={Hess, Sarah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/60021">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60021/3/Hess_2-160cfrqubrq6n2.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60021/3/Hess_2-160cfrqubrq6n2.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Examination of the Connection Between the Horn Problem and the Lax Conjecture</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-01T06:47:17Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-01T06:47:17Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Hess, Sarah</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this Master's thesis, we introduce the additive and multiplicative Horn's Problem and verify the equivalence of both formulations as given by Klyachko. Furthermore, we present a solution to the Horn's Problem following Knutson and Tao and establish the famous Lax conjecture. We provide a solution to the latter as it is given by Grinshpan et al. in the Helton-Vinnikov Theorem. Lastly, we elaborate on the connection between the multiplicative Horn's Problem and Vinnikov curves following Speyer and draw our own conclusions about the connection between the Horn's problem and the Lax conjecture.</dcterms:abstract>
    <dc:creator>Hess, Sarah</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/60021"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2020
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen