Publikation: Examination of the Connection Between the Horn Problem and the Lax Conjecture
Lade...
Dateien
Datum
2020
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In this Master's thesis, we introduce the additive and multiplicative Horn's Problem and verify the equivalence of both formulations as given by Klyachko. Furthermore, we present a solution to the Horn's Problem following Knutson and Tao and establish the famous Lax conjecture. We provide a solution to the latter as it is given by Grinshpan et al. in the Helton-Vinnikov Theorem. Lastly, we elaborate on the connection between the multiplicative Horn's Problem and Vinnikov curves following Speyer and draw our own conclusions about the connection between the Horn's problem and the Lax conjecture.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Horn's Problem, Lax Conjecture, Vinnikov Curves
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HESS, Sarah, 2020. Examination of the Connection Between the Horn Problem and the Lax Conjecture [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Hess2020Exami-60021, year={2020}, title={Examination of the Connection Between the Horn Problem and the Lax Conjecture}, address={Konstanz}, school={Universität Konstanz}, author={Hess, Sarah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/60021"> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60021/3/Hess_2-160cfrqubrq6n2.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/60021/3/Hess_2-160cfrqubrq6n2.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Examination of the Connection Between the Horn Problem and the Lax Conjecture</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-01T06:47:17Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-01T06:47:17Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Hess, Sarah</dc:contributor> <dcterms:abstract xml:lang="eng">In this Master's thesis, we introduce the additive and multiplicative Horn's Problem and verify the equivalence of both formulations as given by Klyachko. Furthermore, we present a solution to the Horn's Problem following Knutson and Tao and establish the famous Lax conjecture. We provide a solution to the latter as it is given by Grinshpan et al. in the Helton-Vinnikov Theorem. Lastly, we elaborate on the connection between the multiplicative Horn's Problem and Vinnikov curves following Speyer and draw our own conclusions about the connection between the Horn's problem and the Lax conjecture.</dcterms:abstract> <dc:creator>Hess, Sarah</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/60021"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2020
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja